Colloid & Polymer Science

Colloid Polym Sci 270:9-16 (1992)

The analysis of slightly distorted SAXS layer line patterns from fibrillar
two-phase systems with short-range order*)

N. Stribeck
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Abstract: The information content of small-angle x-ray scattering from fibrillar
two-phase systems under strain is discussed. The experimental background is a
study of SBS star block copolymer samples during elongation using synchrotron
radiation and a two-dimensional detector. The samples exhibit a layer line
pattern with the slight indication of a four-point diagram. The theoretical
considerations are verified using the experimental data.

Special scattering curves (sections and projections) can be extracted from the
scattering pattern and are used to describe mathematical peculiarities of the
pattern and their physical background. The scope of the paper covers product
separability in cylindrical coordinates and an analysis of the separated factors.
From the physical point of view information is gained on the validity of the
approximation by a “one-dimensional fibrillar system™ and the order within
bundles of fibrils. An expression is given for the background scattering caused by
an ensemble of non-identical oblong particles, organized in bundles of oriented
fibrils. The difference in the information on the structure, obtainable from either
section or projection, is discussed.
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1. Introduction

In recent years, some work has been carried out
in our institute to study thermoplastic rubber sam-
ples produced in a technical process far from ther-
modynamical equilibrium. Among other methods,
we use synchrotron radiation to record two-dimen-
sional SAXS patterns during the first draw cycle
with a VIDICON detector at the Polymer
Beamline, HASYLAB, Hamburg.

In the past, we studied samples of a linear SBS
block copolymer, on which Polizzi and Bosecke [1]
had observed the development of a layer-line pat-
tern within an ellipsoidal envelope. Taking into
account the observed phenomena as well as the
former accuracy of the data, the author developed
an adapted theoretical approach [2] for the evalu-
ation of this scattering pattern. On the basis of this

approach the data were analyzed (Stribeck et al.
[3]).

Now, our interest has turned to SBS star block
copolymers and this paper shall point out corres-
ponding theoretical considerations. Figure 1 shows
the typical SAXS intensity pattern of a SBS star
block copolymer at a medium elongation. This
three-dimensional (3D)-plot shall serve as a help to
demonstrate the necessity of an advanced theoret-
ical paper.

First, data accuracy of the patterns could be
increased considerably since the older experiments.
Thus, there is no longer the need to speculate on
the power of Porods’ law. We now can determine it
after subtracting the fluctuation background, and
are able to study the outer region of the SAXS
pattern.

Second, the evaluation program has been ex-

*) Dedicated to Prof. Dr. Wilhelm Ruland on the occasion of his 65th birthday
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Fig. 1. SAXS intensity pattern of an SBS star block copolymer
at an elongation ¢ = 1,43, Strain is parallel to s3-direction S12»
by convention, is a deliberate distance from the s;-axis (cylin-
drical symmetry). The pattern was recorded using the SIT-
VIDICON detector at HASYLAB, Hamburg. It shows the
central part of the detector area of 512x 512 pixels. A
bordering region of 32 pixels width is omitted in the plot

tended. Thus, we now compute the projection of
the intensity onto a line parallel to the direction of
elongation, and we no longer need to postulate an
ideal layer line pattern. Both sections and projec-
tions are accessible for analysis using our one-
dimensional model function [2, 3].

Third, at medium elongation we, for the first
time, observe some indication of a ““four-point
diagram™. The layer lines show a dent in the
central part, while they are somewhat bent at their
ends. In the study of SBS block copolymers four-
point-diagrams have been observed by several au-
thors (Pakula et al. [4]; Seguela and Prud’homme

[51).

2. Theoretical

2.1. General definitions

Let 7 be the position vector in physical space and
§ the scattering vector in reciprocal space with
|$| = 2(sinB/A). A is the wavelength of radiation, 26
the scattering angle. Let 4p,,(7), the electron dens-
ity difference, be defined by Adp, (7) = pe(7)
— {pa(#) Dy. { Dy denotes the average over the
irradiated volume. Then the scattering intensity

1(3), arising from Ap,,(7), is given by
1(3) = F(4pF* (7)) (1)

with the 3D Fourier transform & ( ) being defined
as

Fg®E) =[ffg

The operator *? denotes the autocorrelation, and
defining the 3D correlation function y(7), Eq. (1)
can be written in the well known formulation

13)=k-F (), (3)

where the scattering power k is given by the integ- -
ral of I(3) over the whole reciprocal space. Thus, k&
reflects “‘the projection of the scattering intensity
onto a point”’.

Let I(3) show cylindrical symmetry

l(§)=1(512, $3) 5 (4)

with s,, defining the radial and s; the axial com-
ponent of the scattering vector. Under this assump-
tion a convenient scattering curve I, is a section
parallel to one of the coordinate axes

Isc (53) = 1(512’ 53) ‘slz=const.
or

Isc(slz) = 1(512’53)|S3=const. . (5)
Such a section can easily be extracted from the
scattering pattern. The special sections through the

origin of reciprocal space (“origin sections”) shall
be written as

|-I § _ls“_:: 1(512, S3)lslz= =I(0’ 53)

rl -|s3 =1I(sy3, $3 |53 0o =1(s;2,0) .

Other kinds of useful scattering curves can be
generated from the scattering pattern by computing
special projections. Let us define the projection of
the scattering intensity I(3) onto the s3-axis by

{I}Su 33 = .H I

=2n-(j)su-1(s12,s3)ds12. @

L2 g3y (2)

(6)

)ds, ds,

2.2. The SAXS layer-line pattern: Sections,
projections, and product separability in
cylindrical coordinates for

a two-phase system

Under Fourier transformation projection and
section exchange

{1}312(53) = k'gl(r')’(;‘”ru(fs)) . (8)
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Here the operator & ,( ) denotes the one-dimen-
sional (1D) Fourier transformation. This theorem
can help to interpret the projection of the intensity
onto a line. Hence, the scattering curve {I};,,(s3)
corresponds to the 1D correlation function
[97,,,(r3), which only collects all the correlations
in r3-direction of the structure in physical space.
Let us now assume this structure to be a two-
phase system. Then, Eq. (8) yields that the intensity
projection has to follow a 1D Porod law:

lim {I},,,(s3) ocs3?. 9)

s3>0

Resuming these considerations, the intensity

projection {I},,,(s3) is the correct scattering curve

to extract structural information involving all the
correlations along the principal axis of the fibrillar
system.

As has been stated in previous studies [2, 3], it
may be sufficient to analyze a deliberate section
Ils:,(s3), if we can assume the intensity 1(3) to be
product-separable in cylindrical coordinates

I(s12553) = f(s12)-8(s3) - (10)
In this case the proportionality
rl—lsu OCI(E)IS'IZOC {1}812 vs'lZ (11)

trivially holds. This product separability is a neces-
sary condition for an ideal layer line pattern.

Equation (11) can be used to test the approxima-
tion of product separability by comparing section
and projection. In doing this, we can even compatre
the Porod law of the section with that of the
projection. An earlier paper [2] states that the
intensity section I(3)]y, (s3), too 1s expected to
show a 1D Porod law within the observable region
of reciprocal space. This should be true even in the
case of imperfect orientation of the fibrils, if only
the particles within the fibrils are not too anisotro-
pic and, furthermore, these particles only show a
short-range order along the fibrillar axis.

If this expectation can be verified, one should at
least find a limited product separability in the
“Porod law region”, which means

1(3)ls,,(s3) oC {1}512(53) for |s3| > s3p 5

or, with Eq. (9)

(12)

I(sy3, s3) =Ap(512)'53_2 for |s3] > s3, . (13)

Here A, (s;;), the “Porod asymptote”, is denoted
as in [2, 3]. s3, shall be defined as the lower limit of
the Porod region.

2.3. The shape of the factor A,(s,,) and
interfibrillar interaction

In a preceding paper ([3], Eq. (5)) the factor

A,y (sy,) was written as
2 Q2

Api(s12) = n~%—'n2—5°1-]inc2(ndslz) .

Here # is the number of particles in the sample,
Ap,, is the contrast of the two-phase system be-
tween particles and matrix, S, is the surface of the
cylindrical particles lid, and d is their diameter.
Jine(x) := 2 - J; {x)/x is a shortcut notation, where
J, (x) is the first order Bessel function of first kind.
A, stands for the ““A -function of a dilute system”.

A_4(sy2) is proportional to the origin section in
s;5-direction of the form factor scattering of »
cylindrical domains. Equation (14) is valid for an
ensemble of identical cylindrical particles which
are perfectly orientated with their axes parallel to
the r;-direction. Moreover, no correlation among
the particles is assumed in the 7 ,-plane. This
assumption implies a very dilute system and thus in
general only allows to describe the trend of A, (sy;)
in a rough approximation.

So let us refine this approximation, in order to
obtain an expression which is adapted to an in-
creased quality of experimental data. Therewith,
we should keep in mind the constraints of the
experimental determination of A,(s;;). In the
probable case that product separability is limited,
the shape of the Porod asymptote must be ex-
tracted from an outer region of the scattering pat-
tern, where intensity is low and, thus, the signal-to-
noise ratio is poor. So we will not be able to record
a detailed A,(s;,)-curve.

At least, one should give up the assumption of a
dilute system, and thus deal with a “bundling of
fibrils”, i.e., the occupation of area by individual
fibrils in the diametrical 7 ,-plane. To consider this
effect, Porod [6] has derived a correction factor
applicable to the above Eq. (14), which can de-
scribe the possible trend of A,(s;,) for a concen-
trated system with sufficient accuracy

(14)

Ap(sy2) = Apyls12) - Clsya) (14b)
and ,
C(s12) = -z (15)

1 —2¢,-cos(2nds,,) + &2~

Here, ¢, is a parameter describing the “probability
of contact” between neighboring fibrils. For ¢, = 0
there is neither attraction nor repulsion between
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the fibrils and, additionally, the shape of the fibrils
lids allows a tiling of the 7,,-plane (i.e., a filling
without intermediate area). In this case, we find the
undisturbed law for A,(s;,), even for a concen-
trated system. According to Porod, &, < 0 means a
tendency to separate; and then A,(s,) will be
varied towards “liquid scattering”. If a tiling of
the r;,-plane is possible and the fibrils show a
tendency to aggregate, ¢ will be positive and
Ap(s12) will be altered towards the typical “gas
scattering’”’.

Figure 2 shows the variation of this model func-
tion A,(s;,) for several chosen values of . We
observe that only in the case of gas scattering is the
outer part of the curve lowered, while in the case of
a segregation tendency the intensity in the central
part is decreased at the expense of a growing peak.

Neither by using ideal nor by using distorted
cylindrical domains (for a visualization cf. Spontak
et al. [7]) it should be possible to tile the r,,-plane.
Thus, liquid scattering is most probable to occur.
In a real system, we will not only observe distor-
tions of particle shape (here: fibril shape), but also a
distribution of sizes (here: fibril diameters). As has
been shown in an earlier paper [2], the function
Jinc(x) can be approximated by the function
sinc (x) := sin(x)/x in the observable region of the
scattering pattern, if we take into account a minor
rescaling with a factor 1.17. If we furthermore
assume the diameter distribution of the particles to

1.2{ S ie= 02
— = 0
\ --:1 € = -0.1

Ap(syp)

0
0.0

Fig. 2. Shape variation of the model form factor scattering
Ap(sy,) according to Egs. (14b) and (15) with Porod’s &
parameter concerning the “probability of contact”. Positive &,
means agglomeration (gas scattering), negative g, separation of
fibrils (liquid scattering). For ¢,= — 0.1, we find a nearly
trapezoidal shape of A,(s;,). The solid line shows the un-
affected form factor scattering (g, = 0)

be a Gaussian function, we can proceed like in [2]
and write for A, (s;;)

Ap,-d-117 1 1
Apalsyz) = nl:p]—‘}

8n
(1 — cos(2nd*s,,)
(16)

d*:=d/1.17, with d being the mean fibrillar dia-
meter. g, is the variance of the Gaussian distribu-
tion of the fibril diameters.

One finds that the tail of A, (s;,) may be severely
damped in the case of a broad distribution of
diameters. This damping would be enhanced if gas
scattering would occur and would be partly com-
pensated in the case of a decreased probability of
contact among the fibrils (liquid scattering).

In the preceding discussion we have neglected
any effects of fibrillar arrangement with respect to
the r;,-plane. If we had such an order of placing,
we should evaluate the function A,(s;,) in the
standard way, i.e., determining a “long period”.
Moreover, if it were possible to obtain precise data,
one could even compute and analyze the correla-
tion function in the r,,-plane (cf. Vonk [8]).

Under certain circumstances it is possible to
decide whether or not the bundled fibrils are ar-
ranged. Let us consider a rubbery system, where we
can assume the volume of the sample to be constant
during elongation. Let us furthermore assume that
after initial drawing fibrils have been formed and
that we observe at least limited product separa-
bility of the scattering pattern, as has been dis-
cussed before.

Then, if A,(s,,) is governed by the arrangement
of the fibrils, we should observe a variation of this
function with increasing strain. A transversal “long
period” L, should decrease according to
L, =A"12.L,, where L, is some initial long
period and 4 is the draw ratio. If we cannot observe
a variation of A,(s;,) with A, the fibrils in the
bundle can be considered to be placed irregularly.

cexp( — 2n%03s3,)) -

2.4. Particle form factor and interpretation of
a ‘“4-point-pattern”

In the last section we discussed the transversal
factor A,(s12), a function which is likely to be
dominated by the form factor scattering and some
influence of fibril bundling. For a two-phase system
with only short range order the interparticular
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interferences along the fibrillar axis should fade
away within a limited interval around the primary
beam. Demanding product separability we thus
find an approximation for a scattering background
B,(s15, s3) in both radial and axial directions, tak-
ing into account bundling of fibrils as well as the
mean form factor scattering of an ensemble of
orientated cylinders in which dimensions of the
individual particles vary according to Gaussian
statistics

By(s12583) = F(s12583) - Cls12) 5 (17)
with
F(sy5,s3) = n[%lﬁ:lz |
[s1#-(1 — cosad*s,,)
rexp(—2n0sia)))
[s32-(1 — cos(2mhss)
rexp(—2n° 03] (18)

b is the mean cylinder height and o, the variance of
the Gaussian distribution of the heights
(d* = d/1.17, cf. Eq. (16)).

Thus, we should keep in mind that evaluating
the ellipsoidal envelope of the scattering pattern to
get information on the anisotropy of the cylindrical
particles, as has been proposed in [2], only thenis a
fair approximation if the variation of cylinder
heights is comparable in amount to that of the
cylinder diameters. Moreover, both the dimension
distributions should be unimodal.

During the straining of thermoplastic rubber
material some authors have observed a four-
point diagram (Pakula et al. [4], Séguela and
Prud’homme [5]), and convincingly interpreted
their data as the result of a superposition of form
factor and lattice factor. An example of such a
structure is shown in Fig. 3a. Due to a constant tilt
of the cylinders with respect to the fibrillar axis, the
two narrow and tilted beams of the form factor cut
four points out of the lattice factors layer lines.
Since form-factor scattering always dominates at
larger || for a system with a limited range of order,
such a structure must have a scattering pattern
where the intensity concentrates within four leaves.

Another possibility to break up the layer lines
into two points each is shown in Fig. 3b. Here the
four-point diagram is just an effect of the “lattice
factor”, due to some kind of ‘“monoclinic macro-

OO
L0

a)

Fig. 3. Model structures resulting in a SAXS 4-point pattern.

a) Pattern created by a superposition of form factor (tilt
cylinders) and one-dimensional lattice (fibril). b) Pattern cre-
ated by a three-dimensional lattice factor (“monoclinic ma-
crolattice”, correlated fibrils)

lattice” (cf. Fronk and Wilke [9}]). In this case, we
should not observe four leaflets of intensity, but a
convex form factor envelope containing layer lines
with a dent in the middle.

3. Experimental verification and discussion

3.1. The general type of the
“four-point-diagram”

Figure 1 shows one of the most pronounced
“four-point-diagrams” from the series of SBS star
block copolymers. According to the preceding dis-
cussion it appears reasonable to assume that cor-
relation of adjacent fibrils causes the layer-lines
dent as well as its bending in the outer region. A
diagram with four peaks which are more or less
separated was never observed.

The assumed transversal correlation of fibrils
can be explained from the four-star topology of the
macromolecules. Some of the macromolecules
should at least connect three different poly{styrene)
domains, so that under strain adjacent fibrils
should partly be arranged in the way outlined in
Fig. 3b.

3.2. Comparison of projection and section

Figure 4 shows an experimental projection
{I},,,(s3) (solid line) and the corresponding section
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Fig. 4. Experimental SAXS intensity projection and section in
a plot revealing a one-dimensional Porod law. The sample is a
SBS star block copolymer at an elongation ¢ = 1.43. The same
constant density fluctuation background was subtracted from
both curves before multiplication with 52

Ilg,, (s3), s, = 0.019/nm (dotted line), multiplied
by s after subtracting a constant density fluctu-
ation background. Both curves are extracted from
the scattering pattern shown in Fig. 1.

We notice the distinct difference between projec-
tion and section in the region of the long-period
reflection, while the tail of the curves follows a long
and perfect 1D Porod law. Within the Porod region
both curves are identical, and this is the proof for
the discussed limited product separability. The sec-
tion in the plot has been multiplied by a chosen
factor, so that the curves match in the Porod re-
gion. Taking into account for this factor, even the
subtracted fluctuation background constant is the
same for projection -and section.

Only the assumption of a one-dimensional
Porod law linearizes the tail of both the scattering
curves. Thus, we conclude that we are allowed to
treat our scattering patterns in terms of a system of
perfectly orientated fibrils.

All the scattering patterns of the studied samples
show these characteristics, if only the relation ¢ > 1
is fulfilled for the elongation (e:= 4 — 1, 4 is the
draw ratio). With increasing strain the difference
between projection and section at the beginning of
the curves decreases (see Fig. 5), but it never van-
ishes. Hence, for the study of the present star block
copolymers, the assumption of an ideal layer line
pattern (i.e. full product separability) is insufficient.
This means, that one should analyze the projection

Fig. 5. Experimental SAXS intensity projection and section.
The sample is an SBS star block copolymer at an elongation
£=5.81

{I},,,(s3), if one intends to study “the average
fibrils one-dimensional structure’.

On the other hand, section I|,;, (s3) should con-
tain some kind of a weighted average over the 1D
structure, where the weighting distribution is a
function of the cutting position s’ ;. We can confine
this diffuse statement, if we make an assumption on
the structure evoking the scattering pattern. Let us
assume that part of the fibrils appear uncorrelated
in radial direction, while in another part of the
irradiated volume fibrils are correlated and appear
to form a “monoclinic macrolattice” according to
Fig. 3b. If we then cut through the maximum in-
tensity of the layer line, we increase the weight of
the macrolattice component at the cost of the
component containing the uncorrelated fibrils.

3.3. Analysis of A,(s,,) and the arrangement
of the fibril rods in the r ,-plane

Figures 6 and 7 show experimental curves
A,(sy,) of the same SBS star block copolymer at
different elongations (Fig. 6: ¢ = 1.43; Fig. 7:
¢ = 3.38). Each of the drawings contains four dif-
ferent curves. These curves are sections
52 -1(3)|s,(s12) of the scattering pattern, taken
from the Porod region in s;,-direction at different
positions s%. Dark symbols denote a section in the
beginning of the Porod region (i.e., small s%), light
symbols denote a section towards the end of the
region where the one-dimensional Porod law is
valid. The fact that multiplication by the constant
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Fig. 6. SBS star block copolymer at an elongation of ¢ = 1.43:
Experimental A, (s ,)-curves from the “Porod region in sj-
direction” at different positions s’5. (l): s53 = 0.018/nm. (A):
sy = 0.022/nm. (O): s% = 0.026/nm. (V): s’y = 0.030/nm

5
S,
N
&
a
<
~
-+
n 0 . ‘
0.00 0.02 0.04 0.06
S12 [nm~1]

Fig. 7. SBS star block copolymer at an elongation of & = 3.38:
Experimental A,(s;5)-curves from the “Porod region in s3-
direction” at different positions s. (H): s5 = 0.016/nm. (A):
s = 0.020/nm. (O): s = 0.024/nm. (V): s3 = 0.028/nm

s’Z scales all the curves onto one master curve again
reflects the validity of the 1D Porod law.

Because of the fact that the data are taken from
the outer region of the scattering pattern, the sig-
nal-to-noise ratio is only fair and even decreases
with increasing s% and increasing elongation e.

We compare the shape of the experimental
curves with the model curves plotted in Fig. 2 and
find that the experimental data are similar to the
“trapezoidal” model curve with a contact para-
meter & = — 0.1. The observed curves show a
distinct bending point, but no maximum.

If we simply approximate the measured curves
by a trapezoid, its only parameters are the position
of the bending point s;,, and the half length s, ,, of
the trapezoids basis. An evaluation of these para-
meters yields a bending point position of
12, ©0.028/nm and s,,, ~ 0.06/nm, independent
from strain.

According to the considerations in the theoret-
ical part of this paper, we thus regard the fibrils in
the bundle to be placed irregularly within the ry,-
plane, since in this case the shape of A,(s;,) is no
function of the population density.

4. Conclusions

The theoretical considerations of this paper con-
cern the information content of the scattering from
fibrillar two-phase systems under strain. If one
observes at least a limited product separability of
the small-angle scattering pattern, the observable
Porod law has to be one-dimensional. In this case
the structural model of perfectly orientated bundles
of fibrils appears to be a good approximation for
the description of the SAXS.

A non-ideal layer-line pattern in this case is most
probably caused by interparticular interferences
among the fibrils in the bundle, as well as by a
dispersion of the fibril structures, if one compares
different bundles. Thus, the different information
content of sections and projection should mainly be
an effect of weighting these structures. While the
projection does have the uniform weighting of the
1D structure, a section may favor a fraction of well-
ordered fibrillar bundles.

If the fibrils show a short-range order only, and
the fibrils are bundled without any preference of
distance or order, the outer part of the scattering
pattern is dominated by a background scattering.
This background describes the particle dimensions,
their dispersion and, according to Porod [6], the
tendency of neighboring fibrils to aggregate or to
separate. For the special case of unimodal Gaussian
dimension statistics of oblong particles, this back-
ground can be presented as an analytical expres-
sion.

An application of these theoretical results to a
series of SAXS patterns obtained from SBS star
block copolymers is possible. For these samples a
quantitative analysis of the structure as a function
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of strain will be published in a following paper
[10].
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