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and compansion1

N. Stribeck

Institut für Technische und Makromolekulare Chemie der Universität Hamburg, Germany

Abstract: An analysis of small angle x–ray scattering (SAXS) data from three
injection molded poly(ethylene terephthalate (PET) samples is carried out.
Two of the samples are annealed at different temperatures. The chosen con-
cept of data analysis is that of Ruland’s interface distribution function (IDF)
of lamellar two–phase systems. The IDF can be expanded into a series of dis-
tance distributions, containing the information on the topological properties of
the ensemble of lamellar stacks in the semicrystalline sample.

The paper describes the stepwise refinement of the topological model. The
final model is described by only few parameters of physical meaning. It unifies
the well–known concepts of an ensemble of non–uniform stacks, finite stack
size and one–dimensional paracrystalline disorder in an analytical expression.
In order to deduce this expression, the concept of inhomogeneity is (imagine
a variation of the long period from stack to stack) is generally treated in terms
of “compansion”, a suggested superposition principle. Its mathematical equiv-
alent in one dimension is the Mellin convolution.
Key words: SAXS — two–phase system — finite lamellar stacks — stacking
statistics — PET

1 Introduction

A frequently studied type of superstructure in poly-
mers is the lamellar two–phase system. Transmission
electron microscopy (TEM) as well as small angle
x–ray scattering (SAXS) are common methods of re-
search in this field. While TEM offers the advantage
of a local visual impression of the structure, the SAXS
method requires appropriate evaluation methods and
structure modeling in order to gain information on
global parameters which characterize the structure.

Even the restricted objective of only determining
the “long period” from the reflection maxima in the
SAXS curve is not a simple task, as Reinhold, Fis-
cher and Peterlin [1] have shown. In order to explain
deviations from Bragg’s law, the authors suggest a
special type of asymmetric function to describe the
frequency distribution of long periods. Asymmetric
distributions of lamellar thicknesses or long periods

have several times been considered for lamellar [2–4]
as well as for general [5] two–phase systems.

Additionally, taking into account the SAXS line
widths, Strobl and Müller [6] conclude that the en-
semble of lamellar stacks shows features of an in-
homogeneity in the sense that the long period varies
from stack to stack. This model has been considered
by others [7, 8] and is similar to the concept of line
broadening due to a “homogeneous tension distribu-
tion” in a polycrystalline solid [9, 10].

If one considers even more features of the scat-
tering curve, the obtainable results become more de-
tailed [11–15]. However, their significance strongly
depends on the validity of the structural model
adopted for data analysis.

The data evaluation with the least a priori assump-
tions has been developed by Vonk and Kortleve [16],
who study the one–dimensional correlation function,

. From , however, it is not a simple task
1typos corrected by the author and reprinted from Colloid Polym Sci 271:1007–1023 (1993)
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to extract the essential parameters of the lamellar sys-
tem (e.g. thickness of the transition zone between the
phases, thickness distributions of the lamellae, the sta-
tistical law governing the stacking of the lamellae).

A more advanced method has been developed by
Ruland [17], who describes the determination of the
interface distribution function (IDF), , by means
of a Fourier transform of an interference function,

or . It is somewhat laborious to ob-
tain from the measured scattering intensity,
whereas for the correlation function method it is, in
general, sufficient to subtract a constant background
from the measured curve before a Fourier transform
is performed. Despite the additional effort associated
with the determination of , this procedure has
two advantages. Firstly, the parameters describing the
deviations of a distorted two–phase system from an
ideal one have been determined [18], and their effect
has been “peeled off”, i.e. eliminated in the remain-
ing data set, paying attention to the validity of Porod’s
law. Secondly, , the Fourier transform of the in-
terference function, can easily be expressed in terms
of the questioned frequency distributions of the crys-
talline and amorphous layer thicknesses of an ideal
two–phase system. Such an ideal system is defined
by only two constant phase densities and sharp do-
main boundaries.

The above mentioned information peeling princi-
ple is the fundamental tool in the present study. It
shall be applied repeatedly, until the lamellar super-
structure appears to be resolved. Thus a model is suc-
cessively generated during several steps of data analy-
sis and a theoretical consideration. The question after
each step will be, are we able to recognize the model
statistics of lamellar arrangement along the stack? If
this is not the case, we will have to peel off another
shell of information first.

2 Experimental and results from as-
sociated measurements

2.1 Samples and density measurements

Three injection molded PET samples have been pre-
pared. After molding, two of the samples have been
annealed for 4 h at different temperatures ( oC and

oC).
The sample dimensions are 40 mm 10 mm

2 mm. Thickness variation of the individual sam-
ple is small.

The densities of the samples have been measured
in a density gradient tube. For the determination,
small piecelets of polymer have been cut away, be-
ginning from the upper edge, resulting in nine layers
of test pieces covering the whole height of the sam-
ple. This procedure has been carried out twice for
every sample in two vertical bands, approx. 1 cm
from each end of the platelet. The unannealed sam-
ple shows an increase of density towards the central
axis of the platelet where the SAXS study has been
carried out previously. The volume crystallinity, ,
increases from 0.37 at the edges to 0.42 in the cen-
ter of the sample. The annealed samples are rather
brittle, so for these samples it has been impossible to
cut intact piecelets ranging from the front to the back
side of the sample. This might in part be a reason
for the poor statistics and only faint indication of a
density increase towards the center, as compared to
the unannealed sample. For every sample the highest
measured density along the center line of the sample
platelet has been used to compute the mean volume
crystallinity . Its difference to the lowest density
reading along this line is assumed to give the error of
determination (cf. Table 1).

Table 1: Injection molded PET samples and their charac-
terization. Annealing temperature , thickness , density

and volume crystallinity , as determined from den-
sity measurement using g cm and

g cm
[C] — 240 248

[mm]
g cm

2.2 X–ray measurements

For all measurements Ni–filtered Cu–K radiation
has been used. With a pinhole camera, wide–angle
X–ray patterns as well as small–angle X–ray patterns
have been recorded on photographic film. The record-
ings from both methods show perfect isotropy and a
long period of approx. 10 nm for all three samples.

For quantitative SAXS measurements a Kratky
Compact Camera, equipped with proportional counter
and energy discriminator has been used. The receiv-
ing slit length, , has been set to an integral length
of nm in units of the modulus of the scatter-
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ing vector (for definition cf. section 4). At each
position of the scattering curve 20000 counts have
been accumulated in order to keep the statistical error
sufficiently small. Normalization to absolute inten-
sity [19] has been carried out by means of the moving
slit method.

Every scattering curve is composed of two sets,
recorded with different entrance slit heights (75 m
and 130 m). Slit–height desmearing does not change
the chape of the individual sets.

3 Data evaluation tools

All data evaluation is carried out on IBM compatible
personal computers. Some programs have been devel-
oped by the author himself by means of Turbo Pascal
6.0. The sources of these programs are documented
in German language.

3.1 TOPAS

TOPAS is a computer program for the processing of
SAXS data from two–phase systems. Its ultimate
capabilities are computation of correlation functions,
chord distributions or IDFs. A small handbook in
English, and an English and German user interface
are available. The minimum hardware platform is a
80286–computer. Hercules graphics or VGA are nec-
essary.

3.2 Nonlinear regression analysis

Interface distribution functions are analyzed by means
of the Simplex algorithm of Caceci and Cacheris [20].
To estimate the quality of the fit, the program module
is extended by several procedures which have been
described by Draper and Smith [21]

Computation of the asymptotic correlation ma-
trix, yielding information on parameter correla-
tion (to avoid overparametrization);

Computation of the asymptotic intervals of con-
fidence for each parameter value;

Plot of the estimation error (to avoid under-
parametrization);

Plots of data and fitted curve.

Since the computation of some special model func-
tions applied in the present study is time consum-
ing, an 80486 with 33 MHz is recommended. In
order to use the different programs successfully, the
user must be able to understand and modify object–
oriented Turbo–Pascal programs which make exten-
sive use of pointer structures.

3.3 Commercial software

Rapid prototyping and visualization in data analysis
as well as in theoretical development has been sup-
ported by MathCAD 2.5. Mathematica has been used
for the verification of theoretical deductions.

4 Non–ideal and global aspects of the
two–phase system

The extraction of the outer shell of information from
the SAXS data sets starts from the absolute, slit–
smeared 1D–interference function or, after
transformation from reciprocal to physical space,
from the IDF . The latter functions contain in-
formation only on the topology of an ideal two–phase
system along the axis normal to the surfaces of the
lamellae. is the modulus of the scattering vector

, with being defined as half of the
scattering angle. nm is the wavelength
of radiation. is the irradiated volume of the sample.
According to Ruland [17,18] is defined by

(1)

with

erfc

Here, , is related to , the width of the
transition zone between the phases. is the density
fluctuation background, which is assumed to be a con-
stant. , the Porod asymptote for the slit–smeared
SAXS curve, is the constant governing Porod’s law.
The term corrects for deviations under the
slit–smearing operation, caused from a phase bound-
ary which is not infinitesimally sharp, but smeared by
a Gaussian distribution with standard deviation .

(1) is exact, but cannot be used to obtain and
easily from experimental data. Under the condition

that is “not too big” in the region where Porod’s
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law is valid, Koberstein, Morra and Stein [22] have
obtained an approximate solution

(2)

which often can serve as a tool to obtain good ap-
proximate values for and directly from a plot

vs. . The procedure to
obtain from the scattering intensity first uses
(2) to obtain approximate values and second (1). The
method has been described elsewhere in detail [23],
and can be carried out with the author’s computer pro-
gram TOPAS.
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Figure 1: Absolute, smeared SAXS intensity, ,
of three semicrystalline injection molded PET samples
recorded with a Kratky camera. Annealing temperatures,

, are indicated.
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Figure 2: Smeared interference functions, , of three
injection molded PET samples obtained from af-
ter correction for density fluctuations and phase transition
zone between the amorphous and crystalline layers. The
presented curves have been smoothed by spline functions.
One set of raw data is shown in addition.

Fig. 1 shows the absolute SAXS intensity
of the three samples. In Fig. 2 the corre-

sponding interference functions, , are plotted.

The curves are smoothed by means of spline func-
tions. In order to judge the reliability of the splines
at large values, the raw data fro one of the curves
have been supplied in addition. Density fluctuation
background, , as well as the dimension of the tran-
sition zone, , describe the deviations from the ideal
two–phase system. The values for these parameters
are given in Tab. 2. has been computed from the
measured smeared background using the equation

( cf. section 2.2). Compared to the
rather small long periods, the obtained values of
are remarkably high. This means that the approx-
imations which lead to the Koberstein–Morra–Stein
plot [22] are not valid. Thus the fluctuation back-
ground in the tail of the scattering curve cannot be
determined straightforwardly from this plot. The fact
becomes evident, as soon as one computes the inter-
ference function with the values for and
estimated from the approximative plot and (1). The
correction which has to be applied to the estimated
values is not small.

Table 2: Injection molded PET samples. Parameters de-
scribing the deviations from an ideal two–phase system.
Density fluctuation background and dimension of
the transition zone between the phases, as determined from
deviations from Porod’s law.

[C] — 240 248
el nm

nm

Table 3: Injection molded PET samples. Invariants of the
ideal two–phase system. , the asymptote of Porod’s law
in the slit–smeared SAXS curve. , the scattering power
of the SAXS with respect to the irradiated volume. , the
mean chord length as computed from and

[C] — 240 248
el nm

el nm
nm

Fortunately, in the present case, the IDF is
found to be very sensitive to the chosen fluctuation
background. Only within a small range of values for

no artificial oscillations can be observed in the
IDF. Thus, in Tab. 2, those parameter values are listed
which minimize these artifacts in the interface dis-
tribution function. It must be noted that the chosen
method of a constant fluctuation background subtrac-
tion may lead to a systematic error for the determined
values of and the scattering power. As has been
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demonstrated by Wiegand and Ruland [24], the shape
of the density fluctuation background should more
generally be approximated by a polynomial in even
powers of . Moreover, Siemann and Ruland [25]
have shown that even small changes in the fluctuation
background for a system of SIS block copolymers can
result in considerable variation in the Porod asymp-
tote .

One observes that the density fluctuation
within the phases decreases as a function of anneal-
ing temperature , whereas the transition zone
between the phases is significantly enlarged for the
sample annealed at o .

Tab. 4 shows the invariants of the ideal two–phase
system, , and , the scat-
tering power. The mean chord length is computed
from and by means of the equation

.

Table 4: Structural model fitting on IDFs from injection
molded PET samples. Topological structure parameters of
the lamellar stacks according to the fits with free–running
variances of the distance distributions (i.e. on as-
sumptions on the statistical model of lamellar arrangement,
but all distance distributions assumed to be Gaussian dis-
tributions). For the values of for higher cf. Fig. 6.

[C] — 240 248
el nm

[nm]
[nm]

According to Ruland [17] the interface distribu-
tion is computed from by the Fourier–
Bessel transform

(3)

with the kernel being expressed in Bessel func-
tions of the first kind

J J J J

The resulting interface distributions of the three sam-
ples are shown in Fig. 3. One should bear in mind
that the first two peaks (i.e. the first two distance dis-
tributions) in the IDF are the distributions of the amor-
phous and crystalline thicknesses. The curves appar-
ently show that the crystallinity within the lamellar
stacks varies as a function of annealing temperature.

In order to quantify this result, a model fit on the IDF
shall be carried out.
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Figure 3: Interface distributions, , of three injection
molded PET samples obtained by Fourier–Bessel transfor-
mation of

5 IDF analysis without assumptions
on stacking statistics

5.1 Considerations concerning the modeling
of the IDF

As Ruland [8] has shown, the IDF of a lamel-
lar two–phase system can be expanded into a series of
distance distributions

(4)

with for mod , and for
mod . (4) is valid for infinite stack height.

Let us number the distance distributions in as-
cending order with respect to their centers of gravity,

. If we consider a semicrystalline lamellar system
with a linear crystallinity , the first distance
distribution will reflect the distribu-
tion of the amorphous layers in the stack. Its center of
gravity, , can be characterized as the average
distance between the density alterations at both the
surfaces of any amorphous layer. In the same man-
ner can be identified as the distri-
bution of crystalline thicknesses, where is
now the average thickness of the crystalline layers.

corresponds to the distribution of “long peri-
ods”, i.e. the distances from the beginning of a crys-
talline layer to the end of the neighboring amorphous
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one (index: ), which should be equal to the distri-
bution of distances from the beginning of an amor-
phous layer to the end of the neighboring crystalline
one (index: ). Thus, ,
and is the long period.

The subsequent distance distributions can be iden-
tified as , ,

, and . These
seven distance distributions describe the scattering
of two crystalline and three amorphous layers from
the infinite stack in a consistent manner. If the
sub–stack height is increased by a single crystalline
lamella, three more distance distribution have to be
taken into account. Thus, it is reasonable for the up-
per limit of summation in the model to choose

Trivially, the center of grav-
ity for every with can be computed from
the centers of gravity and of the first two dis-
tance distributions by successive addition.

If one intends to fit the IDF by a model, at least the
general type of distance distributions must be fixed.
Several studies [1–4] have shown that from experi-
mental findings there may be good reason to assume
that the distributions of crystalline thicknesses and
long periods are skewed. To the knowledge of the au-
thor, the only analytical asymmetric function that has
been applied to SAXS data is the Reinhold distribu-
tion [1]. Its skew is controlled by its center of grav-
ity and a second parameter . A further asymmetric
distribution, which has been proposed by Hanna and
Windle [5], is defined by a rather unwieldy product of
functions. Moreover, this distribution is not defined
for real number arguments, and there is no analyti-
cal expression for its center of gravity. Both func-
tion types are shown in Fig. 4. The Reinhold distribu-
tion shows a typical cut–off at its steep side. If these
functions were to be considered as basic functions for
modeling the IDF, traces of the cut–off should be ob-
servable in IDFs computed from measured data. Such
traces have never been found. Thus, if an asymmet-
ric distribution should be considered, it should more
likely look similar to the Hanna–Windle distribution.

x

f(x
)

Reinhold distribution

Hanna-Windle distribution

 

Figure 4: Examples for shapes of asymmetric distribu-
tions of thicknesses, as discussed by Reinhold, Fischer and
Peterlin [1] as well as Hanna and Windle [5]

If, on the other hand, one tends to assume the dis-
tance distribution to be symmetrical about their cen-
ters of gravity, it is convenient to propose Gaussian
normal distributions as a prototype of
the distance distributions

(5)
Thus, as a first approximation, the model has been

generated from (4) and (5) with and the sym-
metric Gaussian functions. This model has the dis-
advantage of a large parameter set, but the advantage
that no pre–determinations on the statistics of layer
stacking have yet been introduced. Due to the large
parameter set, one should be cautious with the inter-
pretation of its results. Nevertheless, the author has
frequently used it for the determination of an “infinite
linear crystallinity”, , which assumes the irradi-
ated volume to be filled with lamellar stacks of infinite
height, defined by

(6)

as well as for the determination of the widths of the
distributions and . It would probably be
questionable to discuss the widths of the higher dis-
tance distributions in detail. Results on the basis of
such a model of “free–running– ” have been pub-
lished in several preceding papers [26–28].

Despite the above reservation, the general course
of the whole set of parameters shall be used to hint at
the mechanism which is most probably determining
the statistical arrangement of the ensemble of layer
stacks and the lamellae within.
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One–dimensional statistics of distances are fre-
quently treated in terms of a model of paracrystalline
disorder. If one considers a two–phase system, one
can distinguish between a paracrystalline stacking of
both types of layer thicknesses and a paracrystalline
lattice model, where the lattice constant is subject to
paracrystalline disorder, whereas one type of layers
decorates the distorted lattice. If one assumes either
of these variants to be valid, the number of free width
parameters, is reduced to two. The constraining
equations for the computation of the other have
been presented by Ruland [8]. Here, it is only impor-
tant that for both paracrystalline models the relation

const holds.

A different model for one–dimensional statistics
is that of an “inhomogeneous system with exact lat-
tice” (Kratky, cited in Porod [7]), where each stack is
assumed to be a perfect lattice with the lattice constant
varying from stack to stack. Ruland [8] named this
model “homogeneous long period distribution” (“hL–
distribution”, cf. [9, 10]. For this model the increase
of the is limited by the relation const , and
a single width parameter determines all other .

5.2 Results

For the “free–running– model” a part of the pa-
rameter set and the corresponding best–fit values are
shown in Tab. 4. The specified “asymptotic intervals
of confidence” of every parameter value are computed
from the parameter correlation matrix according to
Draper and Smith [21]. is the fitted integral of
the IDF, which should be close to

the Porod asymptote of the unsmeared
scattering curve (of the ideal two–phase system).
The following rows in the table specify the average
thicknesses of the crystalline and the amorphous lay-
ers, respectively, and . is identified by means
of , the crystallinity from density measurement.
At the table bottom the relative standard deviations,

, for the first three Gaussian distance distribu-
tions, , are listed. The width parameters of the
following distance distributions will be presented in
Fig. 6.

Fig. 5 shows an example for the model fit and the
decomposition of the corresponding IDF into the se-
ries of Gaussian distance distributions.
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Figure 5: Decomposition of into Gaussian–type
distance distributions for the unannealed injection molded
PET sample. The width of each Gaussian has been fitted
individually by nonlinear regression (Simplex algorithm)

Table 5: Injection molded PET samples. Deduced
structure parameters, computed by means of the results
of the fit by free–running– and the invariants from
Tab. 3. , linear crystallinity;

, the contrast between amorphous
and crystalline phase.

[C] — 240 248
0.42 0.65 0.68

el nm 43.2 49.5 47.8
Tab. 5 shows values for deduced parameters,

which have been computed in order to discuss and
validate the results of the fits. The crystallinity from
density, (cf. Tab. 1), and from IDF analysis, ,
agree only for the unannealed sample. From bulk
crystallinity and scattering power , one computes
the electron density difference, , between the
phases by means of the equation

(7)

Assuming that were the correct bulk crystallinity,
one obtains the values presented in the second row of
Tab. 5. These values have to be compared to the the-
oretical contrast, el nm , which is com-
puted from the mass density difference between the
amorphous and crystalline phases (cf. Tab. 1). In par-
ticular, the value for the sample annealed at oC
is much too high. Thus, , in general, cannot be
identified with the bulk crystallinity. A similar result
has been obtained in a previous study [23] on differ-
ent PET samples. In the paper mentioned, we drew
the conclusion that “the results favor the view that the
lamellar stacks consist of only 3—6 coherently scat-
tering crystal lamellae and there exist amorphous re-
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gions outside the lamellar stacks. . . ”.
Let us now search for a complete model for the

SAXS which has a small set of parameters with phys-
ical meaning. Fig. 6 shows the sets of width param-
eter values, , as obtained from the free–running–
model fit. The presented plot vs. appears
to be appropriate to hint at the strongest principle of
lamellar stacking statistics. As mentioned above, any
paracrystalline statistics would result in a trend curve
with horizontal asymptote. An hL–distribution type
of statistics, on the other hand, would be indicated
by values following an inclined straight line through
the origin — at least for the values from ,
which correspond to distances of multiples of the long
period.

0 10 20 30 40
di [nm]

0

2

4

6

8

10

σ i
2  

/ d
i  

[n
m

]

10

20

30

ax
is

 fo
r a

nn
ea

le
d 

sa
m

pl
es

as inj. moulded

L

2L

3L

4L
annealed 240 C
annealed 248 C

 

Figure 6: Relative variances of the Gaussian–type
distance distributions from a decomposition in fits
according to Fig. 5 and Tab. 4. Data are plotted as a
function of , the position of the –th distribution. Solid
lines indicate trends for the unannealed (straight line) and
the annealed (increasing curve) PET samples. This plot
serves the purpose to discuss probable principles of lamel-
lar stacking statistics

The left y–axis refers to the unannealed sam-
ple (filled circles). The trend for this sample ap-
pears to warrant further work on the generalization
of th hL–distribution’s principle. The right y–axis
refers to the data of the annealed samples. Here, the
loss of correlation is even worse than for the unan-
nealed sample. Such a behavior could be caused from
lamellar stacks of finite height The author has plotted
width data for several other samples in such test dia-
grams. A paracrystalline trend has never been found.
Sometimes there has been the indication of an hL–
distribution, but mostly the trend has been unclear or
it has hinted at the presence of finite stacks.

The ideal hL–distribution is completely defined
by a single width parameter. But the plots suggest that

at least two independent widths should always be in-
corporated in the model. Therefore, let us try to gen-
eralize the principle of the hL–model and peel off the
corresponding shell of information from SAXS data.

6 Theoretical description of the com-
pansion principle

The ideal hL–model describes the observable struc-
ture as a superpositon of perfect 1D–lattices. It is
assumed that there exist regions in the sample vol-
ume where a common lattice constant can be defined.
From region to region this lattice constant is subject
to such a variation that every local structure can be
generated from an “average local reference structure”
by an affine compression or expansion, respectively.
This superposition principle of the homogeneous long
period distribution ma easily be generalized in order
to describe distorted reference structures.

Let be defined as the IDF of the reference
stack, which shall describe the average local structure
from the ensemble of lamellar stacks. Let be a
frequency distribution of compression/expansion fac-
tors , which have to be applied to the reference stack
in order to generate the ensemble of scattering stacks
as a whole. Then describes the heterogeneity
of the sample, and the observed IDF, , is given
by the superposition

(8)

A well–known integral transform, describing an-
other kind of superposition, is the convolution. It de-
scribes the superposition of a function with itself by
successive translation in the space of its definition.
The convolution is controlled by a second function
which can be considered as the frequency distribu-
tion of translation factors. (8) describes a different su-
perposition principle in which a function is superim-
posed by compressed/expanded images of itself. Let
us name this principle “compansion”. For the present
work it is sufficient to consider “1D–compansion”, a
compansion in one dimension.
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6.1 Problem reduction. Definition and evi-
dent properties of the compansion

Since, according to (4) , every IDF can be expanded
into the series of the distance distributions , the
integral transform may be carried out term by term

(9)

The frequency distribution , by definition, is
normalized to 1 and its center of gravity is at .
By a simple transformation, the same properties can
be guaranteed for . The necessary transforma-
tion combines an affine compression of the –axis and
a multiplication by a scalar factor. The remnant prob-
lem is of a purely mathematical nature, and involves
the study of the integral transform

(10)

for the class of functions with norm and mean equal
to unity (for definitions also cf. section 6.2), i.e.,

(11)

(12)

and , the –th moment of the function , being
defined by (cf. Zelen and Severo [29, chapter 26])

(13)

In mathematical literature (10) is known as known
as “Mellin convolution”2. The relation to the ordinary
convolution is readily established by substituting the
variables in (10) by their logarithms.

In the same way as the ordinary convolution inte-
gral reduces to a simple multiplication upon Fourier
or Laplace transformation, a Mellin transformation of
(10) results in the product of Mellin transforms

(14)
where the Mellin transformation is defined as

(15)

(see, e.g. Titchmarsh [30, p. 53]. For a complete dis-
cussion of the integral (1) see Marichev [31].)

Commutativity of
the compansion can be verified by variable substitu-
tion in (10). Thus, frequency distribution
and structure distribution are, in principle, indistin-
guishable.

6.2 Moment series expansion of the com-
panded function

Consider the series of moments of the companded
function , as well as that of the operand functions

and . Again, following [29], the –th central mo-
ment of a function is defined by

(16)

Here, is called the mean of the function
. is called its variance. is

the skewness of the function and describes its asym-
metry. According to Oberhettinger [32, Theorem 4],
the Fourier transformed function of , can
be expanded into a series of the moments of

O (17)

(17) is valid under the premise of the symmetrical def-
inition

e (18)

of the 1D–Fourier transformation. According to [29],
the central moment can be expressed by a series of
the moments about origin,

(19)

Rearrangement of (19) yields the inverted relation

(20)

2The following part of this section cites from the referee’s comments to the manuscript, which are gratefully acknowledged by the
author.
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6.3 Transformation of moments under com-
pansion

Apply the moment definition (13) to the definition of
compansion, (10) and substitute . One ob-
tains the theorem

(21)

i.e., the moments about origin multiply under Mellin
convolution. Thus, it follows from (11) and (12) that
even the companded function belongs to the class of
functions with norm and mean equal to unity. This
theorem can as well be deduced from (14) due to the
obvious relation between the Mellin transformation
and the moments of a distribution.

6.4 The second moment of the companded
function

Using (20) and (21) for functions from the mentioned
class one obtains for the second moment of the
Mellin convoluted function

(22)

and thus for the second central moment, , of

(23)

6.5 The third moment of the companded
function. Asymmetry

For the computation of the third moment, , let the
operand functions and be symmetric, i.e., their
third central moment shall vanish

Then for , it follows from Theorem (21)

(24)

and with (20) and (23) we obtain for the third central
moment of the companded function

(25)

Thus, , the compansion of the symmetric func-
tion with the symmetric function is asymmetric,
in general. For its skewness it follows

(26)

6.6 Gaussian distributions under compan-
sion

Now assume that as well as are normalized
Gaussian distributions according to (5). The central
moments of Gaussians are well–known definite inte-
grals

for

for

Using the notation of the “double factorial”
the –function can be simpli-

fied to yield

for (27)

With this background, one may recursively compute
all the moments of the compansion of two Gaussians
and thus obtain the power series of (cf. (17)).

6.7 Fourier transformation of the com-
panded function

The Mellin convolution (1D–compansion) from two
Gaussians does not lead to a simple analytical solu-
tion. In general, extensive tables of Mellin transforms
[31, 33] can be used in order to calculate Mellin con-
volutions or to choose model distributions for which a
simple analytical solution exists. But the properties of
compansion are such that it appears to be promising
to search for an analytical , the Fourier transform
of the compansion.

Let be the 1D–Fourier transformation of the
companded function (cf. (18)), then from the
reciprocity theorem of Fourier transformation theory,

(28)

it follows that

(29)
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Here, designates the 1D–Fourier transform of
; and correspond in analogous man-

ner. Now let and be represented by Gaus-
sians with norm and mean equal to unity. We then
obtain for the Mellin convolution in reciprocal space

This integral is soluble. After simplification, com-
pletion of the quadratic form, and variable substitu-
tion, the problem can be reduced to the integration of

, and one finally obtains

(30)
with

(31)

(32)

Compansion’s commutativity is reflected in the result.
It has therefore been demonstrated that the com-

pansion may be solved analytically in reciprocal
space. Since no analytical expression has been found
in real space, reciprocal space data have to be trans-
formed to real space via numerical Fourier transfor-
mation. A high accuracy algorithm is the “fast Fourier
transformation” (FFT), which can be fed with conve-
nient reciprocal space data, so that it produces the re-
sults at precisely the positions where they are needed.

For application in SAXS data analysis, one may
identify , the heterogeneity of the ensem-
ble of stacks. In this case is the relative
standard deviation of the –th distance distribution.

Fig. 7 shows examples for the compansion of two
Gaussians. The heterogeneity parameter is varied
from 0 to 1. The upper drawing shows compansion in
real space. The pure Gaussian for and the
increasing asymmetry as heterogeneity grows shall
be pointed out. The lower drawing shows the same
curves before Fourier transformation. In reciprocal
space the companded functions are presented
with negative sign, in order to make the relation to the

unsmeared interference function more sugges-
tive. Only the branch for positive is shown, since our
problem is dealing with even functions only. Thus for
application in SAXS data analysis, we omit the imag-
inary part in (30), but double the weight of .

0 1 2 3r
0

0.05

0.1

0.15
f(r) σH = 0.0 σg = 0.3

σH = 0.2

σH = 0.4

σH = 0.6

σH = 1.0

 

a)

0 1 2s
-2

-1

0

1
- F(s) σg = 0.3σH = 0.0

σH = 0.2

σH = 0.4

σH = 0.6

σH = 1.0

 

b)

Figure 7: Examples for the Mellin convolution (1D–
compansion) of two Gaussians with mean and norm equal
to unity. The width parameter of the first Gaussian is

. Only the width parameter of the second Gaussian, ,
takes different values between 0 and 1. a) the compansion

in physical space. b) the negative Fourier
transform of the compansion . Functions in both dia-
grams are even

A computer program for the computation of
companded functions on the basis of two Gaussian
operands is available from the author.

7 Results from compansion based
IDF analysis

Having the compansion approach at hand, it would
be easier to fit the unsmeared interference function

than to fit , because for the first func-
tion all terms are analytical. In this case one would
avoid repeated computation of the FFT in each regres-
sion step. But since the author is not able to handle a
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desmearing which will result in a confidential ,
the following results have been obtained from fits on
the IDF as well.

Let us repeat a free–running– model fit, where
the distance distributions are not simple Gaussians
any more, but companded distributions from a Gaus-
sian heterogeneity distribution and mean local
reference distributions . Again, the intention is
to obtain information on the statistics of layer stack-
ing — now for the assumed local stacks.
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Figure 8: Decomposition of into compansion–type
distance distributions for the injection molded PET sam-
ple annealed at oC. Heterogeneity, , as well as the
width of each local Gaussian, . have been fitted individ-
ually by nonlinear regression (Simplex algorithm)

The results for the annealed samples show a re-
markable property, which is presented in Fig. 8. The
diagram illustrates the corresponding decomposition
into the global distance distributions, , which are
companded functions. On now observes the asymme-
try in the negative peaks, which are the multiples of
the long periods. But, more striking, the distance dis-
tribution which range between outer edges of crystal-
lites are almost symmetric (thin solid lines; ,

, ). In other words, the lo-
cal distributions of these distances are rather narrow.
Since the distance distributions in between are con-
siderably wide, we have to conclude that the annealed
samples contain lamellar stacks of finite height.

8 Determination of an appropriate
model for finite stacks by means of
nonlinear regression analysis

If one intends to deal with finite stack systems, three
questions arise. First, it is important to ask for the

distribution of cluster heights. Second, one would
like to find an appropriate model for the description
of the cluster’s border zone, in which the correlation
is lost. And third, it is necessary to determine a suit-
able model for the statistics of lamellar arrangement
within the clusters. These questions have been stud-
ied by model variation, fit on the experimental IDFs,
and comparison of the fit quality.

8.1 The distribution of cluster heights

For the study of the distribution of cluster heights a
vast model has been composed. Both paracrystalline
stacking as well as a lattice with paracrystalline dis-
order have been checked in parallel fits. Both models
assume that every cluster height from (crystalline
lamella without correlation) to a cluster of crys-
talline lamellae is present with individual weights.
The result of this test is that the weights are a func-
tion of the chosen , but all weights except 3 are neg-
ligible. These 3 weights always belong to adjacent
cluster heights. Thus in the next step the complexity
of the model is reduced by assuming that the distribu-
tion of cluster heights can be described by a Gaussian
envelope. This model results an an extremely narrow
Gaussian envelope. Thus it should be allowed to con-
sider stacks of a single stack height only.

8.2 Models for the cluster border

All the preceding modeling has been carried out un-
der the assumption that no border zone contributes to
the scattering. Now, with the finite stack model of a
single stack height, 4 model variants have been tested.

Sketches of these models are shown in Fig. 9.
Fig. 9a shows a stack with the outer correlated zones
being crystalline. In Fig. 9b the outer correlated zones
of the stack are amorphous. For all samples model (b)
fits better than model (a) (by at least 20% what the
residual sum of squares (RSS) is concerned).
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Figure 9: Sketches of models for finite stacks without and
with border zone. The best fits on result from model
d), a stack composed of crystalline, amorphous
layers and some diffuse border zone

The border zone for the models in the lower
row has been introduced by defining an additional
layer with average thickness, thickness distribution
and contrast of its own. Model (c) with some excess
contrast shows severe convergence problems. Model
(d) proves to be the best fitting model of all. But even
here fit quality estimation of the regression analysis
tells that only one of the additional parameters ( ,
the standard deviation of the border zone thickness) is
a parameter of some evidence, whereas average thick-
ness and contrast obtain values without confidence.
As a consequence the border zones thickness has been
fixed at a constant value of nm, and the contrast has
been given half the contrast between and . Since
these settings for the border zone are artificial, the ef-
fect of the border zone term to the scattering curve
shall be given particular attention in section 9. It will
turn out that, indeed, this term is indeterminate do to
the inherent insensitivity of the interference function
at small .

8.3 Statistics with paracrystalline disorder:
Stack vs. lattice

Tab. 6 shows the parameter set of the model fit with
this finals model for paracrystalline stacking statis-
tics, which is the best choice for all samples. The
heterogeneity, , of the system of lamellar stacks
is almost constant for the three samples. The av-
erage crystalline thickness increases with annealing
temperature, whereas its standard deviation with re-
spect to the local stacks vanishes. Thus, in the an-
nealed samples the few crystalline lamellae within a
finite local stack are of approximately the same thick-

ness, while the thicknesses of the amorphous interlay-
ers from these local stacks vary by 40% and more.

Table 6: Structural model fitting on IDFs from injection
molded PET samples. Topological structure parameters of
the lamellar stacks according to the results of the fits by the
final compound model

[C] — 240 248
el nm

[nm]
[nm]

[nm]

The average thickness of the amorphous layers
themselves decreases with increasing annealing tem-
perature. Due to compansion, the global distribution
of amorphous layers is rather asymmetric, whereas
for the crystalline lamellae this is only true for the
unannealed sample. For the latter, the stack height

is rather high. is the number of complete long
periods which belong to a single stack of correlated
lamellae. With a stack height of between 5 and 15
crystalline lamellae, a model of infinitely extended
stacks should result in a proper fit as well. This is not
the case with the annealed samples. Here, the stack
height is truly finite. For the computation of the lin-
ear crystallinity, , this means that the contribution
of the additional amorphous layer “from the other end
of the stack” is not negligible. Thus, for finite stacks,

must be computed from the equation

(33)

The corresponding values are given in the bottom row
of Tab. 6, and now the agreement with the crystallinity
from density, , is good. Thus, for the present sam-
ples it has been demonstrated that the discrepancies
between bulk crystallinity and linear crystallinity have
to be ascribed to the existence of lamellar stacks of
finite height which are embedded in the amorphous
matrix.

Since for the unannealed sample the agreement
between the bulk and the infinite linear crystallinity
has been perfect, and, moreover, the stack height is
high, fits with different infinite models have been car-
ried out as well. The results are presented in Fig. 10.
The worst fit shown is that with purely paracrystalline
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stacking statistics which does not consider compan-
sion. If compansion is considered in addition, RSS is
decreased by a factor of 31. The fit which considers
a finite stack height (but is not shown in the figure) is
only slightly better (RSS = 0.0038). Assuming com-
panded paracrystalline lattice statistics, the fit quality
decreases by almost a factor of two as compared to
paracrystalline stacking statistics. This result is repre-
sentative for all three samples. Thus lattice statistics
can be excluded.
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Figure 10: Results from fits with different statistical mod-
els for the unannealed PET sample, for which the stack
height is close to infinity. RSS is the residual sum of
squares. Solid line: Measured interface distribution, .
Fine dashed line: Paracrystalline stacking with infinite
stack height. Dash–dotted line: Paracrystalline stacks of
infinite height under compansion. Dash–dot–dotted line:
Paracrystalline lattices of infinite height under compan-
sion, with the crystalline layers decorating the distorted lat-
tice

9 Synthesis of the scattering curves
from the model data

Compansion is an analytical function in reciprocal
space. This means that for the suggested model the
desmeared interference function, , is analytical
and can be expressed by

(34)

where characterizes the contribution of the
border zones, and is the main contribution
originating from the correlation among the crystalline
and amorphous layers of the finite stacks

(35)

Here is a weighting factor and will be explained
in the following. is the Fourier trans-
form of a companded function, which is related to a
distance between two phase boundaries in the finite
stack. These phase boundaries enclose a sub–stack
of one or more layers. is the number of layers in
the sub–stack. The accumulation for concerns
those sub–stacks beginning with a layer of “type–1”,
and for the sub–stacks starting from a layer of
“type–2” are accumulated. Type 2 is the phase which
forms both the outer layers of the finite stack. With
respect to the present study, it can be identified as the
phase of the amorphous layers. is the total num-
ber of layers which exist in a finite stack built from
layers of type–1, thus, round . is the
frequency with which a sub–stack is found inside the
finite stack. This sub–stack begins with type– and
contains layers. Sub–stacks with an odd number of
participants obtain negative sign

div

The operators round and div return the integer frac-
tions of rounding and division, respectively. is
the standard deviation of the local Gaussian distance
distribution computed from width parameters and

, according to the paracrystalline stacking statis-
tics. Here is the standard deviation of the
local distribution of crystalline (i.e. type–1) layers.

is identified with and for the variances of the
sub–stack distance distributions we obtain

div div

The average distance between bottom and top of the
sub–stack, follows from

div div

where assignment and is made
in analogy to the preceding definition. The Fourier
transform of the compansion is computed using the
heterogeneity and applying the transfor-
mation rules from section 6.1. In these rules we set

, the relative standard deviation, and com-
press the –scale by the factor . It thus follows that

which is double the real part from (30).
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In a similar way the border term has been defined
by

(36)
Here, is related to the form factor of the total
finite stack including the border zones, but with only
half the contrast. The variables in the sum are now
defined differently by

div div

div div

with nm fixed and small. is the
model parameter for the standard deviation of the lo-
cal border zone.

Fig. 11 shows the decomposition of into
the terms and for the unannealed sam-
ple. The thin dashed curves demonstrate the com-
pansion of the global distribution of crystalline
thicknesses and , which in similar manner cor-
responds to the amorphous layer distribution.
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Figure 11: Components of the model from the best fit of
the unannealed PET sample, presented in terms of the un-
smeared interference function, , the Fourier trans-
form of with negative sign. , : Form
factors of the crystalline lamellae and from the amor-
phous lamellae, respectively. : Stack–border term
in . : Stack–without–border term of the finite
stack in

Obviously, the –term is only significant for
small values of , where the interference function is
rather insensitive due to the multiplication of the scat-
tering intensity by . Thus, the effect of the border
term should only be regarded as some correction term
with low physical meaning.

The next step in data synthesis is the multipli-
cation of by in order to obtain
the desmeared scattering curve, , of the ideal
two–phase system. The synthesized curves are pre-
sented in Fig. 12. Utilizing the equation
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Figure 12: Synthesis of the unsmeared scattering curves,
, from the synthetic curves computed from

the parameter sets retrieved from the best model fits on the
IDFs from measurement.

(37)
one can approximately generate the smeared scatter-
ing intensity by numerical integration and compare it
to the raw measured data. nm is the
upper limit, up to which the model function has been
computed. The computation neglects the effect of a
finite width of the phase transition zone, , which,
with respect to the chosen plot, will lead to very small
systematic deviations in the tail of the curves. Fig. 13
shows the results.
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Figure 13: Smeared scattering curves syn-
thesized from IDF model fits obtained by numeri-
cal smearing of the curves in Fig. 12 and subsequent
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background addition compared to the initial measured
data from 3 injection molded PET samples

From a lower limit of nm the
model functions fit the original data. According to
the preceding considerations, the region for
may be dominated by the nature of the loss of correla-
tion in the border zone of the finite lamellar stacks. To
study this zone, fits of the interference function or on
the IDF are not appropriate, since these functions are
insensitive to considerable changes of the raw data at
small values of , the modulus of the scattering vector.

10 Conclusion

This study shows that the frequently discussed mod-
els for the statistics in an ensemble of lamellar stacks
may be superimposed. This superposition results in
a data set which, in fact, agrees with none of the
pure models. The novel compound model proposed
in this study considers the principles of compansion,
finite stack height, and one–dimensional paracrys-
talline disorder. It is able to describe a wide range of
distorted two–phase structures. The model comprises
a small parameter set of only eight parameters, seven
of which have physical meaning. As has been shown,
the SAXS curve can be synthesized by means of the
analyzed parameter values from the model fit. The de-
viations between measured intensity and model inten-
sity at the beginning of the curve may be related to a
not yet understood principle which describes the loss
of correlation at the border of finite stacks of lamellae.
Some of the deviations between both curves may, in
addition, result from the coarse approach to synthe-
sis of scattering intensity since integration has been
carried out by summation over a finite range only.

Asymmetric distributions of long periods or thick-
nesses of lamellae have been discussed in the litera-
ture. This study has shown that such asymmetry is
inherent to the compansion principle, which has been
proposed here in a theoretical treatment. In the de-
duced form, the compansion may be applied to struc-
tures which are of one–dimensional nature, such as
the analyzed lamellar systems or fibrillar two–phase
systems, e.g. certain thermoplastic elastomers in the
elongated state. A generalization of the compansion
integral transform to three dimensions has not been
attempted.

Compansion may not be a general principle of

distorted two–phase systems, but it should be taken
into consideration. Its presence may be investigate by
means of the presented data evaluation method.
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