
Small-Angle X-ray Scattering Functions in the Vicinity of Zero
Scattering Angle with an Application to Polymer Blends

N. Stribeck

Institut für Technische und Makromolekulare Chemie, University of Hamburg,
Bundesstrasse 45, 20146 Hamburg, Germany

Received November 6, 1995; Revised Manuscript Received July 19, 1996X

ABSTRACT: The small-angle X-ray scattering (SAXS) of isotropic scatterers is studied in the region
near zero scattering angles, where void scattering may contribute to the scattering power Q. Since Q is
evaluated by an integration, the corresponding integrands I1(s) (for point collimation) and Ĩ1(s) (for slit
focus) as well as the relations between them are studied. The properties of both their moments and
their Taylor series expansions are discussed. For a lamellar two-phase system, which is frequently
observed in semicrystalline or microphase-separated polymers, analytical equations are presented. They
can help (1) to extrapolate I1(s) and Ĩ1(s) toward zero scattering angle, (2) to detect void scattering, and
(3) to improve the modeling of the paracrystalline stack even in the case of considerable roughness of the
layer surfaces. An example for a set of semicrystalline HDPE samples illustrates how to quantify void
scattering and the effects of interfacial statistical structure.

Introduction
Many polymer samples exhibit an isotropic small-

angle X-ray scattering (SAXS). If this curve can be
ascribed to a two-phase system, the scattering power Q
is given by a simple equation containing a few param-
eters of direct physical meaning. Q is evaluated by
integration of one of the functions

or

where s ) (2/λ) sin θ is the magnitude of the scattering
vector, I(s) designates the absolute scattering intensity
as measured with point focus, and Ĩ(s) is the “slit-
smeared” scattering intensity, measured, e.g., with a
Kratky camera. [For ease of notation we write I(s) and
Ĩ(s), where I(s)/V and Ĩ(s)/V would be more correct to
write for the absolute intensities. Here V is the volume
of the sample, which is irradiated by the primary beam.]
Even for samples with fiber symmetry the scattering
power is computed from Ĩ1(s) in the same manner, if the
slit of the Kratky camera is oriented parallel to the fiber
direction (Heikens1). The subject of this paper is the
study of these one-dimensional intensity functions in
the vicinity of zero scattering angle. To call these
functions “one-dimensional” ones is suggestive, since the
invariant Q is evaluated by a one-dimensional integral

In order calculate Q, the integrands in eq 3 must be
extrapolated beyond the interval covered by the mea-
sured data. To extrapolate toward wide scattering
angles for a two-phase microstructure, one generally fits
the decay of the intensities (I(s) or Ĩ(s)) to Porod’s law
(AP/s4 or ÃP/s3) and uses this law as an analytical
continuation.2 No theoretical treatment of the extrapo-
lation of the integrands toward zero scattering angle has
previously been presented, although the need for such

an extrapolation was emphasized early in experimental
studies (cf., e.g., Hermans et al.3). On the other hand
I1(0) has been discussed by Zernike and Prins4 as well
as by Blundell.5

Theoretical Results of General Validity
In order not to distract the reader, mathematical

development has been relegated to an appendix, where
it is shown that with respect to the one-dimensional
intensity functions slit smearing can be treated in terms
of a Mellin convolution. By using its properties one
finds (1) that slit smearing moves the center of gravity
of Ĩ1(s) to π/4 times the center of gravity of the un-
smeared curve, I1(s) (eq 18), (2) that there is a relation
between the intercepts,

and (3) that the Taylor series expansion of Ĩ1(s) is

One-Dimensional Intensities for the Model of
Stacked Layers
To gain more information about the shape of the one-

dimensional intensity functions at small scattering
angles, one needs to consider special models.
Stacking Model. Since many phase-separated poly-

mers form stacks of alternating layers of two different
phases, the one-dimensional statistical stacking model
is frequently used. Its principle was introduced by
Zernike and Prins,4 who pointed out that due to the
inherent lack of long range correlation I1(0) is nonzero.
Subsequently, it was substantially extended, discussed
in terms of the “convolution polynomial”, and for the
first time, applied to polymers by Hermans.6 Finally
Hosemann7 showed that the theory of analytic functions
is an elegant tool for the deduction of the intensity
equation. Brämer8 has discussed several variants of the
model and has shown the superiority of the case, in
which the stacking of both kinds of layers is assumed
to occur statistically independently. Assuming an in-
finite stack height, one obtains for this model
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I1(s) ) 2πs2I(s) (1)
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∞
Ĩ1(s) ds (3)

Ĩ1(0) ) 1/2I1(0) (4)
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I1(0)
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Here AP1 ) limsf∞s2I1(s) is the one-dimensional Porod
asymptote. The functions Hi(s) are the Fourier trans-
forms of the layer thickness distributions hi(x), and “Re”
stands for the real part of a complex number. Equation
6 is valid for an ideal two-phase system with sharp
phase boundaries and a constant density within each
of the phases.
In general, the functions Hi(s) are products of the

harmonic function exp(2πidh is) and an attenuating term,
which describes the shape of the layer thickness distri-
bution. dh i is the average thickness of the layers of phase
i.
Intensity I1(s) in the Vicinity of Zero. Assuming

Hi(s) ) exp(2(πσis)2 + 2πidh is), i.e. Gaussian layer thick-
ness distributions with variances σi, one finds for the
expansion of I1(s) about the origin (cf. Blundell5)

where the coefficient of the second-order term is too
complicated to be of practical value. Here dhP ) lP/2 is
the one-dimensional equivalent of the average chord
length in three dimensions, lP, which governs the initial
slope of the one-dimensional correlation function9 γ1(x)
) 1 - x/dhP + O(x2),

By analogy with the notion of a one-dimensional
fluctuation of the electron density,2,10 the zero-order
term can be identified with a one-dimensional “layer
thickness fluctuation”. As expected, I1(0) only vanishes
in the case of an ideal one-dimensional lattice.
By taking additional terms in the Taylor series

expansion of I1(s), one can estimate how many terms
are needed in order to extrapolate point focus curves
with sufficient accuracy. Figure 1 shows that one
should in general employ the expansion up to the fourth
power term in s.
Intensity Ĩ1(s) in the Vicinity of Zero. As Figure

1 shows, the extrapolation of a slit-smeared intensity
near zero angle is much less critical than that of a point
focus curve. Here a linear extrapolation toward zero
should, in general, be sufficient. Moreover, for the
stacking model one finds a Taylor series expansion
which is of some practical use

As one observes, the slope of the extrapolation line is a
function only of the stack composition and does not
depend on the stacking statistics. Thus a perfect one-
dimensional lattice exhibits the same initial slope in
Ĩ1(s) as a stack with only short range order. Using the
definitions of the scattering power Q and the Porod
asymptote AP1 one can finally rewrite the Taylor series
expansion of eq 9 for the case of an ideal one-
dimensional stacking model

where ∆Fel is the electron density difference between
the two phases, ν is the volume fraction of one of the
phases and L ) dh1 + dh2 is the long period. Thus if the
long period and density of a semicrystalline sample
remain constant and the structure can be described
using a statistical layer stacking model, the initial slope
of the curve Ĩ1(s) should not change.

Application to Experiment
In Figure 2 we present slit-smeared one-dimensional

scattering curves, which were recorded by us using a
Kratky camera and discuss the shape of the curves in
the vicinity of zero angle.
Figure 2 shows a subset of data recorded in a study

of blends from HDPE and an SBS block copolymer.
While, in general, the curves follow a straight line in
the vicinity of zero angle, one of the blended samples
shows some scattering, which may come from voids or
imperfect blending on the mill, since the long period and
density are the same for both samples containing 5% of
SBS. The scattering power Q of the “irregular” sample
will thus contain a considerable contribution to Ĩ1(s)
resulting from voids or segregation. For the three
“regular” samples the curves have been extrapolated to
zero angle by extending the linear portion of the
measured data. One observes that the intercept is
indeed non-zero and the equation of the initial straight
line in absolute units is given by

Here “e.u.” is the usual designation for “electron units”.
At least for the pure PE samples one can assume that

their SAXS arises from stacks built from crystalline and
amorphous layers and that it is convenient to express
it in terms of the parameters AP1, dh1, dh2, σ1/dh1, and σ2/
dh2 (cf. eqs 6 and 7). A useful method in order to obtain
values for these parameters is an IDF analysis,11,12
which is performed (1) by transforming the slit-smeared
scattering data to the “interface distribution function”
(IDF) in physical space and (2) by fitting the resulting

Figure 1. Model one-dimensional SAXS curves I1(s) (point
focus) and 2Ĩ1(s) (slit-smeared) for a stacking model (AP1, dh1 )
0.3, dh2 ) 0.7, σ1/dh1 ) 0.7, σ2/dh2 ) 0.3) and a truncated Taylor
series (up to second and up to fourth power, respectively, for
I1(s); up to first power in s for 2Ĩ1(s)).
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2
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2
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curve with the one-dimensional stacking model. From
such a fit one computes

This prediction is shown in Figure 2 as a bold line. One
observes that only the order of magnitude of both
analyses coincides. The observed discrepancy probably
results from the influence of the statistical structure of
the interface between the two phases13,14 on the param-
eters evaluated from the IDF. For samples with a
considerable and uncorrected layer surface roughness
one observes two effects on the layer thickness distribu-
tions determined from an IDF analysis. Firstly, it
broadens the widths of the distributions and thus leads
to an underestimation of the long range order in the
stack. Secondly, it moves the centers of gravity of both
distributions to smaller values and thus underestimates
the long period L.
Together, both effects lead to the crossover observed

in Figure 2 with the three regular curves, since the
initial slope of Ĩ1(s) is not affected by the surface
roughness of the layers. Finally, this comparison may
show a way to quantify the background scattering
effects related to the statistical nature of the interface
in lamellar two-phase samples:
(1) Verify that the initial linear shape of Ĩ1(s) is

governed only by the two-phase system (no voids, no
segregation).
(2) Determine the constants in eq 9 and thus two

constraining equations for the structural parameters of
the stack.
(3) Model the statistical structure of the interface in

the IDF by an additional narrow distribution in the
vicinity of zero and fit the IDF with a one-dimensional
paracrystalline model with the established constraints.

Conclusions

It has been shown that the mathematical treatment
of slit smearing in terms of Mellin convolutions leads
to novel insight into the properties of the integrands,
from which the SAXS invariant is calculated. Consider-
ing the physical parameters which determine the initial
slope and intercept of Ĩ1(s) (in terms of the stack
composition and its range of order), a measurement with

slit collimation may sometimes be more convenient than
one with point collimation.

Appendix A
It is obvious that in the Taylor series expansion of

I1(s) about the origin all the terms with odd powers of s
vanish, since I1(s) is continuous, even, and differentiable
everywhere, i.e.

Moment Expansion of Ĩ1(s). Using the slit-smear-
ing equation for infinite slit length, one obtains a
relation between the slit-smeared and the unsmeared
one-dimensional intensity

which after the variable substitution s2/u2 ) s2 + y2 may
be expressed in terms of a Mellin convolution12,15

defined by the equation

In eq 11 S̃1(s) is a characteristic function which mediates
slit smearing for a class of one-dimensional functions
in reciprocal space under the Mellin convolution. It is
given by

with

being the Heaviside function.
From the definition of the Mellin transformation as

a generalized moment expansion

the Mellin-convoluted function enjoys the property that
its nth moment about the origin, µ′n,fXg, is the product
of the corresponding moments of its constituents,

From the Mellin transform of S̃1 given by

one may therefore study the relation between the
moments of the smeared and the unsmeared one-
dimensional intensities

Figure 2. Reproducibility of sample preparation for blends
fromHDPE and SBS. The study of Ĩ1(s) facilitates the detection
of improper blending or the creation of voids. The predicted
line computed from eq 9 with the structure parameters
obtained from an IDF analysis11,12 of the four samples is shown
in addition.

Ĩ1(s) ) 370 e.u./nm5 + 11 × 103 e.u./nm4 s

I1(s) ) ∑
i)0

∞

a2is
2i (10)

Ĩ(s) ) ∫-∞

∞
I(xs2 + y2) dy ) 1

π∫0∞
I1(xs2 + y2)

s2 + y2
dy

Ĩ1(s) ) S̃1(s) X I1(s) (11)

f(x) X g(x) ) ∫0∞f(y)g(xy) dyy (12)

S̃1(s) ) 1
π

s

x1 - s2
Θ(1 - s) (13)

Θ(x) ) {0 x < 0

1 x > 0

Mf(t) ) ∫0∞f(y)yt-1 dy (14)

µ′n,fXg ) µ′n,f µ′n,g (15)

MS̃1(t) ) 1

2 xπ

Γ(t + 1
2 )

Γ(t + 2
2 )
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In particular, after evaluating the norm and mean of
S̃1, one obtains for the norm and mean of the smeared
1D intensity

and here the relation between the norms is simply a
restatement of eq 3. Combining the relations for the
norm and the mean, one deduces a relation between the
centers of gravity, µ′1/µ′0, of the intensities Ĩ1(s) and I1(s)

If, as in the case of a two-phase structure, I1(s) obeys
Porod’s law, all its moments beginning with the second
one diverge. Then its Mellin transform does not exist
and the useful properties of the Mellin convolution
cannot help to solve the smearing integral transform
analytically.
Taylor Series Expansion of Ĩ1(s). The Fourier

transformation of I1(s) is related to the one-dimensional
correlation function,9 γ1(x)

Thus after Fourier transformation of eq 11 one obtains

This again is a Mellin convolution with the function X̃1
being given by

Its Mellin transform can easily be computed

and setting t ) n + 1, one can study the nth moments
of X̃1(x) about x ) 0, µ′n,X̃1. One now can use the relation
between the moments of a function and the coefficients
in the Taylor series of its Fourier transform, in our
special case written as

and deduce

from µ′0,X̃1 ) 1/2. Thus the value of the smeared one-
dimensional intensity at zero scattering angle is half
the value of the corresponding unsmeared intensity.
Further consideration of eq 21 yields

and

from the values of the Γ function at zero and at negative
whole number arguments. For practical applications
one deduces from eq 23 that in the Taylor series
expansion of Ĩ1(s) about the origin all the terms with
even and positive powers of s vanish, as long as the
corresponding terms in the series expansion of I1(s) are
finite. From eq 24 one finds that in the Taylor series
expansion of Ĩ1(s) about the origin all the terms with
odd powers of s are finite, only if the limit

exists for even values of k. Using l’Hopital’s rule, one
can easily verify that the derivative of the “denominator”
yields finite and nonzero values (e.g., lim1f2 (d/dt)(2
xπΓ((3 - t)/2)/Γ((2 - t)/2)) ) -π).
In summary of the previous considerations, Ĩ1(s) can

be expanded in odd positive powers of |s| plus a well-
defined constant
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