
Small-Angle Scattering kit for Interpretation and
Analysis (SASkia)

Almut Stribeck

July 2018

1 Introduction
Motivation. SASkia is a computer program under development. Its purpose is the
analysis of small-angle scattering data. At the present stage of development I focus
on the analysis of curves, although several methods are already dealing with multidi-
mensional data. The code and parts of it are free to use in other programs.

SASkia is written in python. Python 2.7 is the preferred version, because the short-
comings of Python 3 still make problems. The design goal is to use only standard
python packages except for the command interpreter1.

The native data formats of SASkia are human readable2. Some more data formats
are supported from the beginning3. The author offers implementation help for further
formats, if a description of the format and sample files are provided.

SASkia is not a commercial program. It is continuously extended. Instead of a user
manual some examples are given that hopefully will help the user to learn how to use
the program. Feedback is appreciated.

Commands, Largo scripts, and python scripts. For the purpose of processing of
big data SASkia is controlled by commands. Commands provide basic operations on
a scattering curve. Many tasks of scientific relevance require to carry out a sequence
of basic operations. Such sequences are provided by LARGO-scripts. Such scripts
are text files which can easily be adapted to special conditions of the data. Tasks
which require knowledge of a special experimental setup are served by python scripts.
Processing of 2D scattering patterns is also provided by python scripts – at this stage
of program development.

LARGO4-scripts concatenate a sequence of commands. They define a “super com-
mand”. The call of a LARGO-script can pass arguments to the contained commands.

1The command interpreter is based on the package cmd2
2Curves are stored in simple text files with comments and attributes, 2D patterns are stored in JSON text

files.
3EDF files written at ALBA and ESRF; TIFF files written by MAR detectors; 2D patterns written by the

author’s PV-WAVE procedures (“IMA”); curves in data files written at ALBA.
4Load with ARguments and GO

1

LARGO-scripts may be nested. A typical LARGO-script computes, e.g., the linear cor-
relation function from an isotropic scattering curve contained in the file “mycurve.dat”
(@cor1,mycurve).

More versatile than LARGO-scripts are python scripts, which can also be called
from the command line. Python scripts require programming skills. They can access
the native data of SASkia. They can call commands. They cannot call LARGO-scripts.
They can implant their own data structures in SASkia. A typical python script reads
all raw data related to an experimental run together with its environmental data and
writes for each frame a curve file which contains the curve and all its environmen-
tal attributes (@@mergecAT,Y023_up_000,sy02_up,saxs). mergecAT: merge curves
written at “A”lba in a run related to “T”emperature variation. The first argument
“Y023_up_000” is the run name. The second argument “sy02_up” is the file prefix
for the output files. The third argument “saxs” tells the script to use the data of the
SAXS detector.

2 Installation the simple way

2.1 MS-Windows computers
Generate a user account with a single word (e.g. “joe”, not “joe smith”). This avoids
a file path which includes blank characters (“ “). Do not make any directories which
include blanks! Otherwise the command processor will run crazy.

Download “Anaconda”. Anaconda is a complete python environment. Install Ana-
conda using the flavor Python 2.7. Do not use Python 3!5. If Python 3 is already
installed with Anaconda, you may run into problems6.

From www.anaconda.com/download get the anaconda “Windows
Installer” for Python 2.7 version (For a 64-bit Windows in my case: Anaconda2-
5.2.0-Windows-x86-64.exe) and install. I used the default options.

Let us assume that you are the user “myself”, then your python has been installed in

C:\Users\myself\Anaconda2

and your uninstaller is

C:\Users\myself\Anaconda1\Uninstall-Anaconda2.exe

You are asked, if you want to install the editor “Visual Studio Code” by Microsoft,
which supports Python coding. Why not?

From the App list start “Anaconda Prompt”. A console window opens. Install the
basic command interpreter which is needed by saskia. For this environment three more
packages are requested, which should be installed before cmd2:

5In July 2018 Python 3 is still broken with respect to matplotlib interactive graphics
6With my limited knowledge of Windows it was impossible to replace in Anaconda Python 3 by Python 2

and get saskia to work.

2

C:\users\myself>pip install msgpack
C:\users\myself>pip install argparse
C:\users\myself>pip install grin
C:\users\myself>pip install cmd2

If later some packages should be missing, then install them, too!
Be sure to have a python directory in your data volume:

C:\users\myself>D:
D:>md python
D:>cd python
D:\python:>

Place the file saskia_distro1807.zip in this directory.
Then unzip it. This generates the directory tree for saskia. Check, if saskia can be

started:

D:\python:>unzip saskia_distro1087.zip
D:\python:>cd saskia
D:\python\saskia:>python saskia.py
Retrieving individual configuration from saskia.rc --
SASkia>

This is the saskia prompt which indicates successful start of saskia. You leave saskia
by the quit command. Try the help command.

If you do not end at the prompt, but packages are missing, then install them using
pip and try again.

2.2 Linux computers
If Python 2.7 is not already installed, then use your package installer to install it.

3 Installation problems? Information which may help

3.1 Installation for Python 2.7
Even in 2018 Python 2.7.12 is still the standard provided by Linux (Ubuntu and Kubuntu),
and after own experiences with both 2.7 and 3.6 I agree that this is a very good decision.
Python 2.7 has everything needed, it is slim and fast.

If a Python 2.7 is provided by the operating system, then only a few modules must
be installed in order to run SASkia.

For (K)ubuntu Linux there are only very few python modules which are not auto-
matically installed by the default distribution. They are installed by:

sudo apt-get install python-tk
sudo python -m pip install pygame

If some module should be missing in some other environment, then it may help to look
below where the compilation of Python 3.6 and the manual installation of all modules
is described.

3

3.2 The SASkia package
The SASkia package requires the files sa*.py to be in the program directory (suggges-
tion: ~/python/saskia).

User-written scripts can be placed in a subdirectory scripts. Following the sug-
gested example this would be ~/python/saskia/scripts.

More flexibility can be gained by adapting the file saskia.rc to the special
environment of the user. Presently SASkia only reads the variable scriptpath from
saskia.rc. The path may be specified in an operating-system independent nota-
tion syntax using dot-symbols instead of slashes (Linux, Mac) or backslashes (MS-
Windows)

SASkia can be made callable from anywhere by providing a corresponding script
(bash-script for Linux, bat-file for Windows) in a directory which is in the search path.
For Linux this script is conveniently placed in ~/bin/

#! /bin/bash
Script: ~/bin/saskia
Make it executable by: "chmod 755 saskia"
call SASkia from everywhere
python ~/python/saskia/saskia.py $*

NOTICE: FEATURES FROM ONGOING WORK For the evaluation of scattering pat-
terns I have written several extra modules (sapiawin.py, sapatt.py ...), which
are not called by SASkia directly. They are only called by python scripts which interact
with SASkia. Such scripts are called from SASkia following the syntax "@@script-
name".

For example, some of these python scripts read a complete set of curves and convert
it into two-dimensional data sets. Such data sets are "patterns" (sapatt.py), which
are displayed in python-interactive windows (sapiawin.py) and stored in complex
data files. Such data files can presently conform to one of four different standard for-
mats. If such scripts are called, the corresponding library modules must have been
installed. These libraries are:

JSON My standard cross-platform representation of 2D data

json-tricks A more powerful data format, only readable by python

pickle The standard python-dinosaur format. Slow.

xdrlib Data format of IDL and PV-WAVE (to read old 2D files)

By deleting respective parts of sapatt.py it is possible to eliminate the need to
import some of these modules, if some of the functionality is not needed. JSON is my
favorite for permanent storage of complex scattering data, because it is used by many
other programs (well introduced) and human-readable (i.e. JSON is no binary file, but
a text file).

SASkia has been developed using Python 2.7 under Linux (Kubuntu). From time to
time the program is tested under Python 3.6 under Linux (Redhat) and under Anaconda-
Python 3.6 running under MS Windows. Because the basic cPython of MS-Windows

4

does not support the interactive hook since 3.5.2, we must wait for a correction of this
lapsus (http://bugs.python.org/issue31546 PyOS_InputHook is not called)

3.3 Intallation of Python 3.6
If Python3.6 is not already present, it must be downloaded, compiled, and installed. I
give some hints which may then be important.

3.3.1 matplotlib Graphics backend interfaces

All graphics and interaction with graphics are realized by the standard package mat-
plotlib, which needs at least one “graphics backend”. The standard graphics backend
is TkAgg. Only if Python must be compiled, the following information is essential.

In order for the graphics backend to become available, the corresponding system
libraries must be supplied. For instance, if the standard TkAgg backend must be made
available under RedHat or CentOS, then before compiling Python as root do:

yum install tk
yum install tk-devel # (BOTH must be provided!)

or for the Qt4 backend:

yum install PyQt4
yum install PyQt4-devel#

or for pycairo:

yum install pycairo
yum install pycairo-devel

For ubuntu:

sudo apt-get install tk
sudo apt-get install tk-dev

3.3.2 Installing Python from sources

Download a python source archive, unpack it, enter the generated subdirectory and as
normal user do:

./configure --enable-optimizations
make
make test # (not necessary)

The make command compiles python and all those matplotlib backend interfaces
which have development headers.

As super user do:

make install

With the tk-packages pre-installed we now have _tkinter, the interface for TkAgg.

5

3.4 Installing all packages
This section is in particular important, if no python was pre-installed. All of these pack-
ages belong to the standard libraries under (K)ubuntu, but some of them may miss in
other python distributions. All packages must be installed with administrative privilege
(under Linux: as “root” or with “sudo”).

It may be necessary to install the package installer "pip" itself. Under Kubuntu
(which runs Python 2.7) this is done by the instruction

sudo apt install python-pip

Only on a sudoer-Linux enter a root command shell:

sudo bash

On root-Linux systems and on MS-Windows in the Anaconda console, as long as there
is only one Python version installed:

pip install cmd2

This automatically installs pyparsing, pyperclip, six

pip install ipython # otherwise SAScur has no "ipy"
pip install numpy # For curves and some numerics
pip install matplotlib # For the graphics to work
pip install pygame # For acoustic signals
pip install LATEX # For Label typesetting aka LATEX
pip install Pillow # Just for fun: The new image library.

If Python has been compiled by the user on a CentOS system and scipy is not available:

yum install lapack # For the Fast Fourier Transform
yum install lapack-devel

and for all systems which do not have scipy, but lapack and its development headers
(lapack-devel) are already available

pip install scipy # There you go

If both Python 2.7 and Python 3 are installed on the same computer, all the pip com-
mands must be prepended by the clause python2 -m (if preparing to use Python
2.7) or python3 -m (if preparing to use Python 3). If the packages are installed on a
sudoer system by individual sudo commands, the sudo command should be called like
sudo -H to specify that the packages are installed in the systemwide home directory
to be accessible for all users of the computer.

6

4 SASkia, its command language, and cmd2
SASkia is controlled by commands. The command language interpreter (CLI) is based
on the excellent basic CLI module "cmd2". I have chosen not to rely on the newest
version of cmd2, but to freeze in an older version that still has the feature of command
abbreviation. This module is provided as "savcmd2.py". Nevertheless, "cmd2" should
be available as well, because then the background modules pyparsing, pyperclip and
six are automatically installed, and these modules are required by savcmd2.py. I admit,
in doing so I am relying on that the developers of the background modules will not trim
their interfaces.

The reason for this decision is not only that I like to be allowed to abbreviate com-
mand names, but also the fact that the developers have chosen to revoke a feature
within a few months. Revocations must be noticed years in advance, otherwise the
developer of the user program has to closely monitor the used library modules, take
care of changed interfaces, adapt the user program and inform all users, that an update
is necessary. I try to avoid such work with running targets.

7

