Small-Angle Scattering kit for
Interpretation and Analysis (SASkia)

Almut Stribeck

July 2018

1 Introduction

1.1 Preamble and motivation

When I started to write the program, I had only little knowledge of Python. Therefore it is
expected that the coding is not on an expert level. SASkia is a computer program with a focus
on the analysis of small-angle scattering curves, although several methods' are already dealing
with multidimensional data. The code and parts of it are free to use in other programs. No
guarantee, no liability! Like many computer programs in science, SASkia is continuously
extended according to the needs of the developer. The program is made available to trained
scientists. Instead of a user manual this handout and some examples are given to help the user
to learn how to use the program. Feedback is appreciated.

1.2 SASkia’s habitat

SASkia is written in Python. The design goal is to use only standard Python packages except
for the command interpreterz. The work has been done under Linux (Kubuntu and CentOS)
using Python 2.7 and Python 3.6. A Microsoft Windows 10 environment has been tested with
Anaconda2 (Python 2.7), Anaconda3 (Python 3.6) and several previous Python 3 versions. In
doing so several implementation errors had been encountered. The last® of the critical errors in
Python for Windows was only corrected in version Python 3.7.0. Therefore, under Microsoft
Windows it is recommended to run SASkia under Python 3.7.0%. As long as Anaconda does
not support this version, a plain native installation of Python 3.7.0 does the job.

!0nly some of these methods are supplied. They do not reside in the directory saskia or one of its subdirectories,
but in a parallel directory “devel”.

2The command interpreter is based on the package cmd2

3http://bugs.Python.org/issue31546 PyOS_InputHook is not called when waiting for input()

4The fundamental functions of SASkia (commands for the evaluation of curves; a “graphic” command which only
opens one single x-y-plot window at a time) should not be affected by the remnant implementation error. Affected
are scripts which permit to have several graphical windows open at the same time.

1.3 Its data formats

The native data formats of SASkia are human readable’. Some more data formats are supported
from the beginning®. I can offer implementation help for further formats, if a description of the
format and sample files are provided.

1.4 Functionality of SASkia

Commands, Largo scripts, and Python scripts. Aiming at the processing of big data
SASkia is controlled by commands. Commands provide basic operations on curves. Many
tasks of scientific relevance require to carry out a sequence of commands. Such sequences are
provided by LARGO scripts. LARGO scripts are text files which can easily be adapted to special
conditions of the data’. Tasks which require even deeper knowledge of a special experimental
setup are served by Python scripts. Processing of 2D scattering patterns is also provided by
Python scripts — at this stage of program development.

LARGO8-scripts concatenate a sequence of commands and/or other scripts. They define a
“super command”. The call of a LARGO script can pass arguments to the contained commands
and scripts. LARGO scripts may be nested. A typical LARGO script corrfun_lam.lrg
computes, e.g., the correlation function from the isotropic scattering curve supplied as a text file,
displays it and keeps it in operand 1 (OP1) of saskia. Call:

saskia> @corrfun_lam nmbsy08_0001.dat

More versatile than LARGO scripts are Python scripts. They can also be called from the com-
mand line. Python scripts require programming skills. They can access the native data of
SASkia. They can call commands. They cannot call LARGO scripts. They can implant their
own data structures in SASkia. A typical Python script reads all raw data related to an exper-
imental run together with its environmental data and writes for each frame a curve file which
contains the curve together with environmental attributes. Call:

saskia> @@mergecAT, Y023 _up_000 sy02_up saxs

mergecAT: merge curves written at “A’lba in a run related to “T”’emperature vari-
ation. The first argument “Y023_up_000" is the run name. The second argument
“sy02_up” is the file prefix for the output files. The third argument “saxs” tells the
script to use the data of the SAXS detector. By this last feature the script considers
the fact, that during the respective beam time the scattering has been monitored by
two detectors, namely a SAXS detector and a WAXS detector.

SCurves are stored in simple text files with comments and attributes, 2D patterns are stored in JSON text files.

SEDF files written at ALBA and ESRF; TIFF files written by MAR detectors; 2D patterns written by the author’s
PV-WAVE procedures (““. ima”); curves in data files written at ALBA.

7«Adapting” means fixing some parameters of contained commands and keeping other parameters suppliable.

8Load with ARguments and GO

Curve operands inside SASkia. The program saskia provides three standard® “operand
arrays” (OPO, OP1, OP2) which can contain curves together with their attributes. The saskia
commands work on these operands. readcurve reads a curve from a file into an operand,
writecurve writes curves from an operand into a file.

2D scattering patterns inside SASkia. Presently there are no standard operands for 2D
scattering patterns in saskia, but there is already a package sapatt.py which works with
patterns (or even photos). For the display of patterns sapiawin.py is provided. It does not
limit the number of patterns which may be displayed simultaneously. This interactive concept
made patterns vulnerable to shortcomings of the implementations of Python for MS-Windows.

A cmd2 feature: Diving into SASkia at runtime. Whenever Python has the package
ipython installed, SASkia has also the command ipy, which starts an interactive Python
session in the console. Then the user can test interactively, what single Python instructions do.
Scientists who have worked with PV-WAVE, IDL or matlab A have come to appreciate this
feature.

A cmd2 feature: Executing operating system commands. An input line which starts
with an exclamation mark “!” is interpreted as the call of a command to the operating system.
Under Windows this is, in principle, a DOS command. Under Windows, if you want to rename
the file rawdata.dat you would issue

saskia> !rename rawdata.dat baddata.dat
Under unix the same operation would require the phrase
saskia> !mv rawdata.dat baddata.dat

Read the documentation of cmd?2 to find out more about built-in features before
you write your own Scripts.

2 Installation the simple way

2.1 MS-Windows computers
2.1.1 The SASkia user

Generate a user account with a single word (e.g. “joe”, not “joe smith”) for your work with
Python. This is the first step to avoid file paths which includes blank characters (‘“ *). Do not
make any directory names with blanks! Otherwise the command processor of SASkia may
run crazy.

°In the 3 standard operand arrays the number of points is limited to 4096 points (self._maxp in saskia.py may be
changed to change the limit). This static definition is conservative and robust. It appears sufficiently suited for
the processing of curves.

2.1.2 Install a mature Python version

In July 2018 Python 3.7 is not yet available for Anaconda. Therefore I describe the plain vanilla
installation of Python 3.7 in the normal command terminal (cmd).

Under MS-Windows Python 3.7.0 is mandatory. Earlier versions of Python for
Windows carry implementation errors. Then the use of advanced functions of
Python’s standard plotting package matplotlib will blow up the program under Win-
dows.

e From Python.orgdownload Python-3.7.0-amd64.exe, if you run a 64-bit Win-
dows. Open this installer. On the first window that opens be sure to activate the button
Add Python 3.7 to PATH! Otherwise it will become difficult to start Python. Install
Python 3.7.

e Open a console terminal'® by typing into the task bar: cmd.

Check Python. In the console terminal (cmd) issue

C:\Users\MYSELF>python —--version
Python 3.7.0

C:\Users\MYSELf>

0.K. — you have a working Python 3.7.0

2.1.3 Place and expand the distribution archive

The Python directory for program sources. Be sure to have a Python directory'! on
your data volume

:\Users\MYSELF>D:
:>md python

:>cd python
:\python>

O O O 0

Place the SASkia distribution. Place the SASkia distribution archive saskiayymm.zip
(e.g. saskial807.zip) in the directory D: \python\. Unzip the file fo D:\python. These opera-
tions can be done by clicking and drawing the mouse in the graphical file manager!? Unzipping
generates the directory tree for saskia. Check by using the DOS dir command

101 you have Anaconda installed, the “Anaconda Prompt” window will not work, although it looks almost the same.
Anaconda replaces the $PATHS variable.

I'This directory is only for such program code that is of general importance

12 A5 soon as you hook it in the GUI window, a message box “Tools for compressed folders” pops up. Click it.
Before starting change the folder to which the archive shall be expanded to D: \python

D:\python>dir
you should see two directories

22.07.18 19:19 <DIR> devel

22.07.18 19:19 <DIR> saskia

22.07.18 18:51 2.4M saskial807.zip
22.07.18 19:19 86KB saskia_handoutl1807.pdf

saskia and its subdirectories hold program and general scripts. devel is a directory for script
development.

2.1.4 “Plan A”: Supply required Python packages by batch script

Now some packages and an optimization are still missing. If you are brave and trust in a batch
file of mine you can try to do the work using a provided batch file make_envsaskia.cmd.

D:\python>cd BatchFiles
D:\python\BatchFiles>make_envsaskia

If this does not work, you will have to install the required packages manually.
2.1.5 “Plan B”: Supply required Python packages manually
e Upgrade Pythons Package installer “pip” by issuing:
python -m pip install --upgrade pip
o Install packages which are needed for saskia:
pip install cmd2
pip install pygame
pip install json_tricks
pip install ipython

pip install scipy

If in the function test some packages turn out to be missing, then install them, too!

Optimization. Sure, you want to start saskia simply by writing “saskia” when you are in the
project directory which contains your experimental data:

e Verify your search path
echo %PATHS%

In the search path there should be a directory like

C:\Users\MYSELF\AppData\Local\Programs\Python\Python37\

with MYSELF replaced by your actual user name. This directory can serve!? as your “bin direc-

tory”, as it is called by unix people. There you can put own Python-related programs and scripts
(in particular the script saskia.cmd). If this directory does not exist in your search path, then
choose another suitable one or extend the search path by your favorite “bin directory” and place
saskia.cmd there. In the favorite case, the command

copy D:\python\saskia\BatchFiles\saskia.cmd &
$userprofile$\AppDatal\Local\Programs\Python\Python37\

(in a single line, please, and remove the “&”) places the saskia.cmd in one of the standard
directories in the search path on my Windows computer. Thereafter it is found by the operating
system on call from everywhere.

2.1.6 Low-level functionality test

Check, if saskia can be started from its home directory within the “cmd” console terminal (The
first start takes quite a long time, because the sources are compiled):

D:\python:>cd saskia
D:\python\saskia:>python saskia.py
Retrieving individual configuration from saskia.rc

SASkia>
This is the saskia prompt which indicates a successful start of saskia. You leave saskia by the
quit command. Try the help command.
2.1.7 Functionality test

From a console-terminal prompt started by “cmd” issue

C:\Users\MYSELF>saskia
Retrieving individual configuration from saskia.rc

SASkia>

This should start saskia, as well.

2.1.8 Demonstration of SAXS evaluation reciprocal-to-real space

C:\Users\MYSELF\>D:
D:>cd saskial\examples
D:\saskia\examples>saskia @run_examples

131n fact, every directory in the search path is searched for binaries or batch files. My suggestion is, to keep similar
things together, i.e. Python related stuff should be kept together with Python related stuff.

2.2 Linux computers

If Python 2.7 is not already installed, then use your system package installer to install it.
For (K)ubuntu this is “apt”, for Centos “yum”, Debian has “dpkg”. You will know. You
may, as well, decide to run SASkia under Python 3.6 or Python 3.7.

Under Linux the Python directory is suggested to be a direct descentent of the user’s home
directory. L.e.: as a subdirectory of your home directory make a directory named “Python”.

~> mkdir python
Put the distribution file in and unzip it:

~> cd python
~/python> unzip saskial807.zip

This will generate the same saskia tree as in the case of the mentioned installation under
Microsoft Windows. Nevertheless, here it is residing in your home directory.

Install the required extra packages:

~> pip install cmd2
~> pip install pygame
~> pip install json_tricks

Try to start saskia

~> cd python/saskia
~/python/saskia> python saskia.py

If this works: Have a look at the Section Optimization. If missing packages are reported:
Install them. If there is a more severe problem: The Section Installation Problems may
help.

For unix-based computers saskia works with many Python versions starting from Python 2.7,
e.g. Python 3.6.

3 Optimization

Starting SASkia is simplified, if it can be called from everywhere by typing saskia .

“Everywhere” typically is a directory which contains the data to be evaluated. More-
over, in such an experiment related directory the user can develop and keep local
scripts. Local scripts are a proper way to document the specialities'# of the applied
evaluation route.

E.g.: Starting from the program directory saskia enter the subdirectory examples
and start “saskia @run_examples” from there.

14Such specialities are: the s-range of the valid curve points, the chosen methods of extrapolation and smoothing,
the number of extra iterations of spatial frequency filtering ...

The simple start of saskia is achieved by putting a batch script in the search path. Respective
scripts for Microsoft Windows (saskia.cmd) and Unix (saskia) are provided in the subdirectory
BatchFiles of saskia. There you also find a description concerning the placement and
activation of these scripts.

For Unix-based operating systems place the bash script saskia in the directory ~/bin/
— the user’s directory for exexutable files. Do not forget to make the bash script
executable.

Concerning Microsoft Windows, I have to confess that I am no expert. I have sug-
gested to put the cmd-script in a directory, which has been put in the search path
anyway at the time when Python 3.7 has been installed.

4 From reciprocal to real space: Correlation functions and
chord distributions.

Probably the reader has come here, because he was searching for a program that offers to com-
pute chord distributions g (r) according to Méring and Tchoubar or interface distributions like
g1 (r) according to Ruland. Then go to the subdirectory'®> examples of saskia, start saskia
and issue

saskia> @run_examples

This script will read some supplied scattering curves from isotropic data and compute the ad-
dressed functions and the respective correlation functions. Each result will be shown in a plot
window for inspection. The next curve will be computed after the actual plot window is closed.
The provided curves are only pre-evaluated!®. So other pre-evaluated curves should be process-
able in a similar manner after minor adaption of some parameters.

A good start to dive into saskia may be to inspect the scripts in the directory examples.
Own curves in text files can easily be read in. Have the script code available, issue command by
command and check the result of each step by the “graphic” command. Probably arguments
must be adapted (limits, estimated background, extrapolation method, scope and step-size of the
resulting functions in real space). With noisy data smoothing may help (commands: median
or smplain). If only the unstructured tail of the curve shall be smoothed, then smooth the
whole curve, call graphic and there li(n)k your smoothed tail to the unsmoothed original —
but doing so is not suitable with big data.

When a script is working for some frames of an experiment, we want to apply it to all the
frames. In a pedestrian way we redirect!’ a file listing to a super-script text file. Thereafter
suitable “find and replace” makes every line a call of our tuned script.

1511 a standard installation on Microsoft-Windows this is D: \python\saskia\examples — on Linux this is
~/python/saskia/examples.

16pre-evaluation: Spike removal, background correction, normalization, conversion to units of s. If your data are in
units of g, the units are converted by the supplied script gt s . 1rg (call: saskia> @qt s)

When the user gets annoyed by such manual work using a text editor, he may think of writing
a Python script which assembles the lines of the “super-script” text file from arguments <head-
text>, <data-file-name> and <tail-text>. After this script works nicely, he may find out that this
task would make a good saskia command and incorporate it.

5 SASkia, its command language, and cmd2
5.1 SASkia and cmd2

SASkia is controlled by commands. The command language interpreter (CLI) is based on the
excellent basic CLI package "emd2". I have chosen not to rely on the newest version of crnd2,
but to freeze in an older version that still has the feature of command abbreviation. This package
is provided as "savcmd?2 . py". Nevertheless, "cmd2" should be available as well, because then
the background packages pyparsing, pyperclip and six are automatically installed, and
these packages are required by savemd?2 .py. I admit, in doing so I am relying on that the
developers of the background packages will not trim their interfaces.

The reason for this decision is not only that I like to have a command interpreter which under-
stands deliberate abbreviations as long as they are unique, but also the fact that the developers
of cmd?2 have chosen to revoke a central feature on short-notice. Freezing the package prevents
SASkia from being destabilized by a package that must be considered unstable.

5.2 Extensions of cmd2

In order to permit script nesting'®, cmd2 has been extended in several respects. The exten-
sion which is most important for the user is the way, how commands and their arguments are
separated. It has been introduced to facilitate the most simple mapping paradigm of actual'®
arguments to formal?® arguments, namely by their position on the command line.

Separators. On the user prompt line?! multiple commands are separated by an ampersand
(“&”) character. Arguments are either separated by blanks (as is the standard with cmd?2) or by
commata (my extension). This means that

e arguments are passed to commands and scripts by their position
e arguments (e.g. strings, names, directories) must not contain blanks

” 113

e sequences of “ ,” or*“, “actas repeated separators and should be avoided

18Script nesting means, that a script can also contain calls of other, “inner”, scripts. When an inner script returns
successfully, the outer script is continued. The inner script can be called with arguments, and these arguments
may even been assembled in a new way by the outer script.

19 Actual arguments are the data which the user supplies when he calls the command or the script

20Formal arguments are the arguments which the programmer supplies when he writes the command or the script.
In scripts the formal arguments are designated by $1, $2, $3, ..., $8, $9.

210ny on the user prompt saskia> ! In LARGO scripts every line must only contain one single command.

e the comma separator permits to skip the explicit specification of arguments. Such skipping
tells the command to use the default argument. E.g.: mul,,, 2 will multiply the curve in
OP1 by s%, whereas mul, 12.566,2 will multiply it by 47 s%.2?

Passing arguments to LARGO scripts. Inside LARGO scripts arguments are repre-
sented by a placeholder sequence “$7?” in which ? must be one of the digits “1” to “9”. Upon
interpretation of a script line it is scanned for such placeholders. Only if the script has been called
with a respective actual argument, the supplied argument string?® replaces the placeholder. If
not, the placeholder remains unchanged*.

6 Installation problems? Information which may help

Preamble. This section is not edited any further. It has been written during the time when I
was working on the optimization of Python versions and program code for my program to run at
least under unix and MicroSoft Windows. Therefore, there are also aberrations described here.
Be warned!

6.1 Installation for Python 2.7

Even in 2018 Python 2.7.12 is still the standard provided by Linux (Ubuntu and Kubuntu), and
after own experiences with both 2.7 and 3.6 I agree that this is a good decision. Python 2.7 has
everything needed, it is slim and fast.

If a Python 2.7 is provided by the operating system, then only a few packages must be installed
in order to run SASkia.

For (K)ubuntu Linux there are only very few Python packages which are not automatically
installed by the default distribution. They are installed by:

sudo apt-get install python-tk
sudo python -m pip install pygame

If some package should be missing in some other environment, then it may help to look below
where the compilation of Python 3.6 and the manual installation of all packages is described.

6.2 The SASkia package

The SASkia package requires the files sax.py to be in the program directory (sugggestion:
~/python/saskia).

User-written scripts can be placed in a subdirectory scripts. Following the suggested
example this would be ~/python/saskia/scripts.

22For information about the available commands issue the he 1p command. For information concerning the multiply
command issue help mul or help, mul.

23This means that the command processor handles an argument merely as a sequence of characters. Conversion into
numbers or other kind of data types is the task of commands and Python scripts.

24In general, not servicing the request for an actual argument will cause an error by the command or the Python
script which is finally called.

10

More flexibility can be gained by adapting the file saskia. rc to the special environment
of the user. Presently SASkia only reads the variable scriptpath from saskia.rc. The path
may be specified in an operating-system independent notation syntax using dot-symbols instead
of slashes (Linux, Mac) or backslashes (MS-Windows)

SASkia can be made callable from anywhere by providing a corresponding script (bash-script
for Linux, cmd-file for Windows) in a directory which is in the search path. For Linux this script
is conveniently placed in ~/bin/

#! /bin/bash

Script: ~/bin/saskia

Make it executable by: "chmod 755 saskia"
call SASkia from everywhere

python ~/python/saskia/saskia.py $=*

NOTICE: FEATURES FROM ONGOING WORK For the evaluation of scattering patterns I
have written several extra packages (sapiawin.py, sapatt.py ...), which are not called
by SASkia directly. They are only called by Python scripts which interact with SASkia. Such
scripts are called from SASkia following the syntax " @ @scriptname".

2D patterns. For example, some of these Python scripts read a complete set of curves and
convert it into two-dimensional data sets. Such data sets are "patterns” (sapatt .py), which
are stored in complex data files. The formats of these data files are based on standard formats.
Therefore the corresponding packages must be installed, if such scripts are called. Such pack-
ages are:

JSON My standard cross-platform representation of 2D data
json_tricks A more powerful data format, only readable by Python
pickle The standard Python-dinosaur format. Slow.

xdrlib Data format of IDL and PV-WAVE (to read old 2D files — * . ima)

By deleting respective parts of sapatt .py it is possible to eliminate the need to import some
of these packages, if some of the functionality is not needed. JSON is my favorite for permanent
storage of complex scattering data, because it is used by many other programs (well introduced)
and human-readable (i.e. JSON is no binary file, but a text file).

Patterns: Display and manipulation. Patterns are displayed in Python-interactive windows
(sapiawin.py). If such a window is open, the corresponding data can be explored and ma-
nipulated interactively. Such interactive work is initiated by single key strokes followed by using
the mouse to input a vector (savecsel.py). The vector can be interpreted as a line, a circle,
a box or as the spine of a bar which must be “opened” by a second vector input. All these items
except for a line define a region, and the region of interest (ROI) may be the inside or the outside
of the region. A modifier key (Shift, Ctrl, Alt) defines the different modes. The exploration
modes report the maximum intensity or the minimum intensity in the ROI together with position

11

information. The manipulation modes are used to declare invalid intensity by setting all pixels
in the ROI to 0. ROI pixels can also be set to an intensity value of 1. In this way masks can be
built. Such masks are useful to declare regions in all scattering patterns of an experiment which
contain invalid data (primary beam stop, beam stop holder, shade of vacuum tube, ...).

Final remark. SASkia has been developed using Python 2.7 under Linux (Kubuntu) and
Python 3.6 under Linux (CentOS, Redhat). Under Microsoft Windows the various Python im-
plementations cause various problems. As long as no “sapiawin” 2D-patterns are displayed,
the coding should be stable even under Windows. If such interactive windows shall be used,
most of the Windows versions are buggy, although there are some version combinations of mat-
plotlib and Pythons which have worked. The last severe lapsus was loss of the interactive hook
(http://bugs.python.org/issue31546 PyOS_InputHook is not called), which has been corrected
in June 2018 with Python 3.7.0 for Windows.

6.3 Installation of Python 3.6

If Python3.6 is not already present, it must be downloaded, compiled, and installed. I give some
hints which may then be important.

6.3.1 matplotlib: Graphics backends

All graphics and interaction with graphics of SASkia are realized by the standard package
matplotlib, which needs at least one “graphics backend”. The standard graphics backend is
TkAgg. Only if Python must be compiled, the following information is essential.

In order for the graphics backend to become available, the corresponding system libraries
must be supplied. For instance, if the standard TkAgg backend must be made available under
RedHat or CentOS, then before compiling Python as root do:

yum install tk
yum install tk-devel # (BOTH must be provided!)

or for the Qt4 backend:

yum install PyQt4
yum install PyQt4d-devel#

or for pycairo:

yum install pycairo
yum install pycairo-devel

For ubuntu:

sudo apt-get install tk
sudo apt-get install tk-dev

12

6.3.2 Installing Python from sources

Download a Python source archive, unpack it, enter the generated subdirectory and as normal
user do:

./configure --enable-optimizations
make
make test # (not necessary)

The make command compiles Python and all those matplotlib backend interfaces which have
development headers.
As super user do:

make install

With the tk-packages pre-installed, we now have _tkinter, the interface for TkAgg.

6.4 Installing all packages

This section is in particular important, if Python is compiled from its sources. All of these
packages belong to the standard libraries under (K)ubuntu, but some of them may miss in other
Python distributions. All packages must be installed with administrative privilege (under Linux:
as “root” or with “sudo”).

It may be necessary to install the package installer "pip" itself. Under Kubuntu (which runs
Python 2.7) this is done by the instruction

sudo apt install python-pip
Only on a sudoer-Linux enter a root command shell:
sudo bash

On root-Linux systems and on MS-Windows in the Anaconda console, as long as there is only
one Python version installed:

pip install cmd2
This automatically installs pyparsing, pyperclip, six

pip install ipython # otherwise SASkia has no "ipy"

pip install numpy # For curves and some numerics

pip install matplotlib # For the graphics to work

pip install pygame # For acoustic signals

pip install BIEX # For Label typesetting aka BEIEX

pip install Pillow # Just for fun: The new image library.

If Python has been compiled by the user on a CentOS system and scipy is not available:

13

yum install lapack # For the Fast Fourier Transform
yum install lapack-devel

and for all systems which do not have scipy, but lapack and its development headers (lapack-
devel) are already available

pip install scipy # There you go

If both Python 2.7 and Python 3 are installed on the same computer, all the pip commands must
be prepended by the clause python2 -m (if preparing to use Python 2.7) or python3 -m (if
preparing to use Python 3). If the packages are installed on a sudoer system by individual sudo
commands, the sudo command should be called like sudo —H to specify that the packages are
installed in the systemwide home directory to be accessible for all users of the computer.

14

